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This survey primarily deals with certain aspects of ergodic theory, i.e. the study of groups
of measure preserving transformations of a probability (Lebesgue) space up to a met-
ric isomorphism [8, Section 3.4a]. General introduction to ergodic theory is presented in
[8, Section 3]. Most of that section may serve as a preview and background to the present
work. Accordingly we will often refer to definitions, results and examples discussed there.
For the sake of convenience we reproduce some of the basic material here as need arises.
Here we will deal exclusively with actions of Abelian groups; for a general introduction

to ergodic theory of locally compact groups as well as in-depth discussion of phenomena
peculiar to certain classes of non-Abelian groups see [4]. Furthermore, we mostly concen-
trate on the classical case of cyclic systems, i.e. actions of Z and R. Differences between
those cases and the higher-rank situations (basically Zk and Rk for k ! 2) appear already
at the measurable level but are particularly pronounced when one takes into account addi-
tional structures (e.g., smoothness).
Expository work on the topics directly related to those of the present survey includes the

books by Cornfeld, Fomin and Sinai [29], Parry [124], Nadkarni [114], Queffelec [128],
and the first author [78] and surveys by Lemańczyk [104] and Goodson [64]. Our bibli-
ography is far from comprehensive. Its primary aim is to provide convenient references
where proofs of results stated or outlined in the text could be found and the topics we
mention are developed to a greater depth. So we do not make much distinction between
original and expository sources. Accordingly our references omit original sources in many
instances. We make comments about historical development of the methods and ideas de-
scribed only occasionally. These deficiencies may be partially redeemed by looking into
expository sources mentioned above. We recommend Nadkarni’s book and Goodson’s sur-
vey in particular for many references which are not included to our bibliography. Good-
son’s article also contains many valuable historical remarks.

1. Spectral theory for Abelian groups of unitary operators

1.1. Preliminaries

1.1.1. Spectral vs. metric isomorphism. Any measure preserving action Φ of a group G

on a measure space (X,µ) generates a unitary representation of G in the Hilbert space
L2(X,µ) by Ug :ϕ !→ ϕ ◦ Φg−1. For an action of Z generated by T :X → X the nota-
tion UT for the operator U1 is commonly used; often this operator is called Koopman
operator since this connection was first observed in [95]. If two actions are isomorphic
then the corresponding unitary representations in L2 are unitarily equivalent, hence any
invariant of unitary equivalence of such operators defines an invariant of isomorphism.
Such invariants are said to be spectral invariants or spectral properties. Actions for which
the corresponding unitary representations are unitarily equivalent are usually called spec-
trally isomorphic. We will use terms “unitarily equivalent” and “unitarily isomorphic” in-
terchangeably.
Let us quickly describe the difference between the spectral and metric isomorphism for

groups of unitary operators generated by measure preserving actions. In addition to the
structure of Hilbert space which is preserved by any unitary operator, the space L2(X,µ)
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has an extra multiplicative structure. There is a certain subtlety in describing this structure
in purely algebraic terms since the product of two functions from L2(X,µ) may not be an
L2 function so the whole space is not a ring with respect to addition and multiplication.
There are however various dense subsets (e.g., bounded functions) for which multiplication
is always defined; a proper abstract description leads to the notion of unitary ring [136].
An easier way to capture the essential part of the multiplicative structure which avoids

many technical complications is as follows. First there is preferred element, the constant
function equal to one which is the multiplicative unity. Second, there are the idempo-
tents characterized by the equation f 2 = f which evidently correspond to characteris-
tic functions. Products of characteristic functions correspond to intersection of the sets:
χA1 · χA2 = χA1∩ A2 and hence the union is also recovered: χA1∪A2 = χA1 + χA2 −
χA1∩A2 = χA1 + χA2 − χA1 · χA2 .
Now let us call a unitary operator U :L2(X,µ) → L2(Y,ν) multiplicative if it takes

idempotents into idempotents and preserves the product of such elements. Assuming that
(X,µ) and (Y,ν) are Lebesgue spaces [8, Section 3.2b], [141,86] such an operator is
generated by an isomorphism of measure spaces, h : (Y,ν) → (X,µ), i.e. U(f ) = f ◦ h.
Naturally, the Koopman operator generated by a measure preserving transformation of a
Lebesgue space is multiplicative.
This can summarized as follows:

PROPOSITION 1.1. Unitary representations generated by measure preserving actions of
a group G are metrically isomorphic if and only is they are unitarily equivalent via a
multiplicative operator.

A closed subspace H ⊂ L2(X,µ) is called a unitary ∗-subalgebra if H is invariant
under complex conjugation, bounded functions are dense in H and product of any two
bounded functions from H is again in H . In this case characteristic functions generate H

and H defines a measurable partition ξ of the space X in the following way.

PROPOSITION 1.2. Any unitary ∗-subalgebra consists of all functions in L2(X,µ) which
are constant mod 0 on elements of a measurable partition. If a unitary ∗-subalgebra is UT

invariant then the corresponding measurable partition is T invariant and defines a factor
of the measure preserving transformation T .

For a more detailed description see [21, Section 5], [141].
For a general discussion of spectral properties for groups of measure preserving transfor-

mations see [4]. In the remainder of this section we will discuss the case of locally compact
Abelian groups. In the rest of the survey we will restrict our considerations to the classical
cases of automorphisms and flows, i.e. actions of Z and R correspondingly (and primarily
the former) with only occasional comments related to actions of other groups.

1.1.2. Duality for locally compact Abelian groups [126, Chapter 6], [115, Section 31].
LetG be a locally compact second countable topological Abelian group. A character ofG
is a continuous homomorphism χ :G → S1. Characters form a group which is often called
the dual group of G and is denoted by G∗. There is a natural locally compact topology
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onG∗. It can be described as topology of uniform convergence on compact sets or, equiva-
lently, as the weakest topology which makes any evaluation map eg :χ !→ χ(g) continuous.
Obviously eg :G∗ → S1 thus defined is a continuous character of G∗. The Pontrjagin Du-
ality Theorem asserts that any continuous character ofG∗ has the form eg and that element
g ∈ G is uniquely defined [126, Section 40], [115, Section 31.6]. This is usually expressed
in an attractive compact form

G∗∗ = G.

A useful addition to the Pontrjagin Duality is the observation that G∗ is compact if and
only if G is discrete. In what follows the group G will be assumed not compact, but it may
be discrete or continuous.
There are natural functorial properties of the duality, all easily derived from the fact

that arrows in natural homomorphisms get reversed. For example, the dual to the direct
sum of finitely many groups is the direct sum of their duals, the dual to the direct sum
of countably many groups is the direct product of the duals, and there is a natural duality
between subgroups and factors, and between direct and inverse limits.

EXAMPLE 1.3. Z∗ = S1 = R/Z, (Zk)∗ = Tk = Rk/Zk , (Rk)∗ = Rk , Furthermore,
(Z∞)∗ = T∞, where Z∞ is the discrete direct sum of countably many copies of Z and
T∞ is the compact direct product of countably many copies of S1.

EXAMPLE 1.4. The multiplicative group of roots of unity of degrees 2n, n = 1,2, . . . , with
discrete topology is the direct limit of cyclic groups of order 2n, n = 1,2, . . . . Its dual is
the compact additive group Z2 of dyadic integers, which is the inverse limit of such cyclic
groups. By replacing 2 with a natural number m one gets roots of unity of degrees mn,
n = 1,2, . . . , and the m-adic integers correspondingly.
Using the duality between direct sums and direct products one sees that the dual to the

group of all roots of unity is the direct product of the p-adic integers
∏

Zp over all prime
numbers p.

Here is another example of the duality between direct and inverse limits.

EXAMPLE 1.5. The dual to the group Z[1/2] of rational numbers whose denominators are
powers of 2 (which is a direct limit of free cyclic groups) is the dyadic solenoid

S2
def=

{
(z1, z2, . . .): z1 ∈ S1, z2n+1 = zn,n = 1,2, . . .

}
.

1.2. The spectral theorem

1.2.1. Formulation in the general case. A character χ can be viewed as a one-dimen-
sional unitary representation of the group, namely the element g ∈ G acts on C by the
multiplication by χ(g). Every irreducible unitary representation of an Abelian group is
one-dimensional (see, e.g., [115, Section 31.7]). The spectral theorem states essentially
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that every unitary representation of such a group in a separable Hilbert allows a canon-
ical decomposition into a (in general, continuous) direct sum (i.e. direct integral) of
characters. In this the spectral theorem represents a special case of the general theorem
about the decomposition of a unitary group representation into irreducible representations
[4, Theorem 3.1.3] (see [38] for a proof), but since in the Abelian case the structure of irre-
ducible representations is simple and well understood it is considerably more specific than
the general case.
Thus in the case of Abelian groups the spectral theorem gives a full collection of mod-

els for all unitary representations together with a necessary and sufficient condition for
equivalence of such models.
Let G be a locally compact second countable Abelian group, ν be a σ -finite Borel mea-

sure on the dual group G∗ and m be a ν-measurable function on G∗ with values in N ∪ ∞.
LetHν,m be the subspace of the ν-measurable square integrable functions ϕ :G∗ → l2 such
that at a point χ ∈ G∗ all but the first m(χ) coordinates of ϕ(χ) vanish. The space Hν,m is
a separable Hilbert space with respect to the scalar product

〈ϕ,ψ〉 =
∫

G∗

(
ϕ(χ),ψ(χ)

)
l2 dν.

The group G acts unitarily on the space Hν,m by the natural scalar multiplications:

U ν,m
g ϕ(χ) = χ(g)ϕ.

THEOREM 1.6 (The spectral theorem). Any continuous in the strong operator topology
unitary representation of G in a separable Hilbert space is unitarily equivalent to a repre-
sentation U ν,m.
Furthermore, representations U ν1,m1 and U ν2,m2 are unitarily equivalent if and only

if measures ν1 and ν2 are equivalent (i.e. have the same null-sets) and m1 = m2 almost
everywhere.

REMARK. Since every σ -finite measure is equivalent to a finite measure, one can assume
without loss of generality that in the spectral theorem the measure ν is finite. If the group
G is discrete (and hence G∗ is compact) this is a customary assumption. However, in the
case of a continuous group, such as R, the most natural measure on the dual group, the
Haar measure, is not finite. Accordingly, in the spectral theorem instead of finiteness of ν
one assumes only local finiteness.

1.2.2. Sketch of proof for single operator. We outline a proof of the spectral theorem in
the particular case of the action of a single operator U on a Hilbert space H .

DEFINITION 1.7. Consider a unitary operator U acting on a Hilbert space H . Let Hf be
the norm closure of the linear span of the Unf , n ∈ Z. The space Hf is called the cyclic
subspace generated by f .

Let us denote the scalar product in H by 〈·, ·〉 and let θ be the natural cyclic coordinate
on S1.
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THEOREM 1.8. There exists a positive measure νf on S1 = R/Z with total mass ‖f ‖2
such that for the unitary operator

M :L2
(
S1,νf

)
→ L2

(
S1,νf

)
, g !→ e2π iθg,

there exists an isometry V between Hf and L2(S1,νf ) which conjugates the restriction of
U to Hf and M (i.e. V U = MV ), such that Vf = 1 (the constant function on S1) and

〈f,Unf 〉 = ν̂f (n), n ∈ Z. (1.1)

PROOF. If (1.1) holds then the correspondence Unf → e2π inθ , n ∈ Z, extends to the isom-
etry V with desirable properties. Thus it is sufficient to prove (1.1), i.e. to show that the
correlation coefficients 〈f,Unf 〉 are Fourier coefficients of a measure. For that consider
the following sequence of positive measures:

νN,f =
∥∥∑N

n=1 e2π inθUnf
∥∥2

N
dθ .

One can calculate the Fourier coefficients of these measures directly. In particular, if
|k| " N , then

ν̂N,f (k) = 1
N

∫

S1
e−2π ikθ

∑

1!m,n!N

〈
e2π imθUmf, e2π inθUnf

〉
dθ

= 1
N

∫

S1

∑

1!m,n!N

e2π i(m−n−k)θ 〈Um−nf,f 〉dθ = N − |k|
N

〈f,Ukf 〉.

This equality for k = 0 means that the total mass of νN,f is constant, νN,f (S1) = ‖f ‖2.
Since for any k ∈ Z, the Fourier coefficients ν̂N,f (k) converge to 〈f,Ukf 〉, this implies
that νN,f converge weakly to a measure νf on S1 satisfying (1.1). #

The measure νf is called the spectral measure associated to f . If UT is the Koopman
operator acting on L2(X,µ) and f ∈ L2(X,µ) is a real-valued function, then the measure
νf is symmetric with respect to the real axis.
We now state an important lemma, due to Wiener, which identifies all the invariant

subspaces for the action of the operatorM :g !→ e2π iθg in L2(S1,ν).

LEMMA 1.9. If ν is a positive finite measure on S1 and K is a closed M-invariant
subspace of L2(S1,ν) then there exists a measurable set E ⊂ S1 such that K =
{f ∈ L2(S1,ν): f = 0 on Ec}.

PROOF. The projection of the constant function 1 on K , PK1, is a characteristic function
since if for every n ∈ Z,

∫
(1−PK1)e2π inθPK1dν = 0
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then PK1(1−PK1) = 0, ν almost everywhere. This implies existence of a measurable set
E such that PK1= χE and 1−PK1= χEc . #

As an immediate corollary one obtains

THEOREM 1.10. Let U be a unitary operator acting on H . Let g1 and g2 be two elements
in H such that the measures νg1 and νg2 are mutually singular. Then

Hg1 ⊥ Hg2 .

Furthermore

Hg1+g2 = Hg1 ⊕ Hg2 .

Finally, if there exists f ∈ H such that Hf1 ⊂ Hf , Hf2 ⊂ Hf and Hf1 ⊥ Hf2 , then the
measures νg1 and νg2 are mutually singular.

PROOF. This is an easy consequence in the circle model, constructed in Theorem 1.8, for
the action of U on a cyclic subspace. For, since invariant subspaces are entirely character-
ized by subsets of the circle, we see that two such subspaces are orthogonal if and only if
the corresponding sets are disjoint. In particular, a vector whose spectral measure has full
support is cyclic. #

DEFINITION 1.11. Let U act on H as before. The maximal spectral type νU of the op-
erator U is a positive measure on S1 (which is defined up to equivalence) such that for
every f ∈ H the measure νf is absolutely continuous with respect to νU and no measure
absolutely continuous with respect to νU but not equivalent to νU has the same property.

In the case of an action of Z the Spectral Theorem 1.6 which gives a complete set of
invariants for a unitary operator, takes the following form.

THEOREM 1.12. Let the unitary operator U act on H . There exists a family of positive
measures on S1, uniquely defined up to equivalence,

ν1 ! ν2 ! ν3 ! · · · ! νn ! · · · ,

where ν1 is the maximal spectral type νU , such that the action of U on H is unitarily
isomorphic to the action of M (the multiplication by e2π iθ ) on the orthogonal sum

⊕

i"1
L2

(
S1,νi

)
.

SKETCH OF PROOF. The theorem follows from the observation that if f and g in H have
the property that νf ∼ νg , then the two actions of U on H⊥

f and H⊥
g are unitarily equiv-

alent. This can be seen as it suffices to check that the restrictions of U to the invariant
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spaces H⊥
f ∩ Hf,g and H⊥

g ∩ Hf,g are equivalent. Here Hf,g denotes the invariant sub-
space generated by f and g. These two spaces are cyclic and it is easily checked that they
have equivalent spectral measures. #

REMARK. Alternatively, one can take a sequence of ν1 measurable sets in S1, Ai , i ! 1,
Ai+1 ⊂ Ai such that νi = ν1 · χAi .

1.3. Spectral representation and principal constructions

One of the advantages of the spectral representation is that it behaves nicely under the
natural functorial constructions.

1.3.1. Restrictions. For the representation U ν,m all closed invariant subspaces can be de-
scribed. We will denote by lm2 the subspace of l2 which consists of all vectors for which all
but firstm coordinates vanish. The following statement generalizes the Wiener Lemma 1.9.

THEOREM 1.13. Any U ν,m invariant closed subspace of Hν,m is determined by a ν-
measurable field of closed subspaces Lχ ⊂ l

m(χ)
2 , where by definition l∞2 = l2, and consists

of all ϕ such that ϕ(χ) ∈ Lχ .

PROOF. First, consider the case of a cyclic subspace for U ν,m generated by f ∈ Hν,m.
Since U ν,m acts by scalar multiplications, the subspace Hf of all functions proportional to
f on the set

Sf
def=

{
χ ∈ G∗: f (χ) 1= 0

}

and vanishing on G∗ \ Sf , is U ν,m invariant. The maximal spectral type on the subspace
Hf is the restriction of ν to the set Sf . But then f generates this subspace since by the
Wiener Lemma 1.9 any invariant subspace of Hf consists of functions vanishing on a
certain subset of Sf of positive ν-measure and hence it cannot contain f .
Now consider an arbitrary invariant subspace H . It is generated by a finite or countable

set of functions f1, . . . . Every cyclic subspaceHfn determines a subset Sfn and a field Ln,χ

of one-dimensional subspaces on Sfn . The sum of those subspaces at each χ ∈ G∗ forms
a ν-measurable field of subspaces Lχ and since every function g with values in Lχ is the
limit of linear combinations of functions with values in Ln,χ , we conclude that g ∈ H . #

1.3.2. Direct products. Similarly it is easy to represent the Cartesian product of repre-
sentations of the form U ν,m in a similar form.

THEOREM 1.14. The Cartesian product of representations U ν,m and U ν′,m′ is unitarily
equivalent to the representation U ν+ν′,m+m′ .
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1.3.3. Tensor products. The tensor product of representations U ν,m and U ν′,m′ can be
described as follows. Take the group G∗ × G∗ = (G × G)∗ with the measure ν × ν′. Let
m(χ1,χ2) = m1(χ1) · m2(χ2). Consider the space Hν×ν′,m. The group G acts diagonally
on that space:

(Ugϕ)(χ1,χ2) = χ1(g)χ2(g)ϕ(χ1,χ2).

This is a representation of the tensor product of U ν,m and U ν′,m′ . From this representation
the spectral representation of the tensor product can be deduced. We do this explicitly for
the case of two Koopman operators in Section 4.1.3.

1.4. Spectral invariants

DEFINITION 1.15. For a given unitary representation of G the equivalence class of the
measure ν in a unitarily equivalent representation U ν,m is called the maximal spectral type
of the representation. The function m is called the multiplicity function.

The maximal spectral type and the multiplicity function form a complete set of invariants
for a unitary representation of a locally compact Abelian group.

1.4.1. Maximal spectral type. The maximal spectral type is an equivalence class of mea-
sures on the locally compact group G∗. In the two classical cases G = Z and G = R the
maximal spectral type is a class of measures on the circle and the real line correspond-
ingly. The first of those cases has already been discussed in Section 1.2.2, the second is
summarized in Section 1.4.4 below.
The crudest distinction among measures is between atomic and continuous. Any mea-

sure uniquely decomposes into an atomic (discrete) and continuous part and this decom-
position is invariant under equivalence of measures. Atoms in the maximal spectral type
correspond to the eigenvectors for the representation: the characteristic function of such an
atom is an eigenfunction.
If the maximal spectral type is atomic the representation is said to have pure point spec-

trum. There is a difference with the notion of discrete spectrum common in many areas of
analysis. The spectrum may be pure point but the eigenvalues may be dense inG∗ or, more
generally the eigenvalues may not be isolated; in other words, the spectrum as a set does
not have to be discrete. Since genuine discrete spectrum appears in ergodic theory only
in some trivial situations the term “discrete spectrum” is sometimes used instead of “pure
point”.
On the other hand, in our setting there is a special continuous measure on G∗, the Haar

measure λ; any measure absolutely continuous with respect to Haar is called simply ab-
solutely continuous. Any non-atomic measure singular with respect to the Haar measure is
referred to as simply singular. Thus, an arbitrary measure on G∗ allows a unique decom-
position into atomic, absolutely continuous and singular parts invariant under equivalence.
Representations whose maximal spectral type is atomic, absolutely continuous, or singular
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are referred to correspondingly as representations with pure point, absolutely continuous,
or singular spectrum.
Theorems 1.6 and 1.13 easily imply

COROLLARY 1.16. The maximal spectral type of the restriction of a representation to any
closed invariant subspace is absolutely continuous with respect to the maximal spectral
type of the representation.

1.4.2. Correlation coefficients. Similarly to the case of a single operator (Definition 1.7)
for a unitary representation U ofG in a Hilbert spaceH with the scalar product 〈·, ·〉, every
element v ∈ H determines the cyclic space Hv , the minimal closed U -invariant subspace
which contains v.
Theorem 1.13 implies that an invariant subspace is cyclic if and only if for almost every

with respect to the maximal spectral type χ ∈ G∗ the space Lχ has dimension at most one.
The maximal spectral type in the space Hv is represented by the measure νv , called the
spectral measure of v, where

〈
v,U(g)v

〉
=

∫

G∗
χ(g) dνv.

Similarly to the case of the single operator (Section 1.2.2) these scalar products are often
called the correlation coefficients of the element v. Notice that the spectral measure is
always finite, since ‖v‖2 = νv(G

∗).

REMARK. Correlation coefficients can be viewed as the Fourier transform of the measure.
It is useful to remember that the Fourier transform is linear and that the product of Fourier
transforms corresponds to the convolution of measures. In ergodic theory convolutions
appears in connection with multiplication of functions in the study of Cartesian products
(Section 4.1.3) as well as in situation when multiplicative structure is well related with
the spectral picture, such as the pure point spectrum (see Section 3.5), Gaussian systems
(Section 6.4.1), and Gaussian Kronecker systems (Section 6.4.3).

For the representation U ν,m the cyclic space determined by a function ϕ consists of all
functions whose values are proportional to those of ϕ. This implies that νϕ = |ϕ|2ν and
hence

COROLLARY 1.17. For any finite measure µ absolutely continuous with respect to the
maximal spectral type there exists v ∈ H such that νv = µ.

Recall that a set in a topological space is called residual if its complement is the union
of countably many nowhere dense sets. In the spaceH ν,m the set of elements which do not
vanish is residual. Thus we obtain from Theorem 1.6.

COROLLARY 1.18. The spectral measures for a residual set of elements belong to the
maximal spectral type.
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1.4.3. Multiplicity function

DEFINITION 1.19. An essential value n ∈ N∪{∞} of the spectral multiplicity for a unitary
representation of an Abelian group G is any number such that the multiplicity function m
takes value n on a set of non-zero measure with respect to the maximal spectral type.
The maximal multiplicity is the supremum of essential values.
The representation is said to have a homogeneous spectrum if there is only one essential

value of the spectral multiplicity. This value is then called the multiplicity of the homoge-
neous spectrum. If the only essential value is 1, the representation is said to have simple
spectrum.

Simple spectrum is equivalent to cyclicity of the whole space: there exists a vector v such
that the linear combinations of vectors Ug(v), g ∈ G, are dense. Homogeneous spectrum
of multiplicity m (finite or infinite) can be characterized as follows:
There exists a decomposition of the space H into an orthogonal sum of m cyclic sub-

spaces such that the restrictions of the representation into all of those subspaces are uni-
tarily equivalent.
The following closely related fact which follows immediately from Theorems 1.6

and 1.14, is often used in ergodic theory and is central in relating various symmetries
with spectral properties (see Section 5.8).

COROLLARY 1.20. Suppose U is a unitary representation of a locally compact Abelian
group G in the Hilbert space H . Suppose that H decomposes into the orthogonal sum of
k ∈ N ∪ {∞} invariant subspaces and the restrictions of U to all of those subspaces are
unitarily equivalent. Then all essential values of the spectral multiplicity are multiples of k.

Given a collection of elements v1, . . . , vk ∈ H , the subspace Hv1,...,vk is defined as the
minimal closed U -invariant subspace which contains v1, . . . , vk . It follows directly from
Theorems 1.6 and 1.13 that the maximal multiplicity of a representation U is equal to the
infimum of k such that H = Hv1,...,vk . In particular, if there is no such finite collection
v1, . . . , vk then the maximal multiplicity is infinite; this does not imply though that ∞ is
an essential value.
In ergodic theory it often happens that one can construct sequences of cyclic subspaces,

or, more generally, subspaces generated by a given number of vectors, which approximate
every vector sufficiently well. Existence of such a sequence allows to estimate maximal
spectral multiplicity from above thus improving the criterion above. For a v ∈ H and a
closed subspace L ⊂ H let us denote as before by PLv the orthogonal projection of the
vector v onto L.

THEOREM 1.21. Let U be a unitary operator on the Hilbert space H . If for every ortho-
normalm-tuple of vectors v1, . . . , vm ∈ H , there existsw ∈ H such that the cyclic subspace
generated by w, Hw satisfies:

i=m∑

i=1
‖PHwvi‖2 > 1
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then the maximal spectral multiplicity of U is " m − 1.
In particular if m = 2 the representation has simple spectrum.

PROOF. If the spectral multiplicity of U is ! m, and if ν is the spectral measure of U we
can find, by the spectral Theorem 1.12, a set A in S1 such that there exists a U -invariant
subspace K of H restricted to which U is isomorphic to the sum of m copies Ki , i =
1, . . . ,m, of the action of M on L2(S1,χAν) (M as in Theorem 1.8). We choose for vi ,
i = 1,2, . . . ,m, the functions χA/ν(A)1/2, i = 1,2, . . . ,m, of the above model. Then there
exists wi ∈ Ki , i = 1,2, . . . ,m, and w′ orthogonal to K such that w = ∑i=m

i=1 wi + w′. Let
w̃ = ∑i=m

i=1 wi . Then PHw̃
vi = PHw

vi .
Now, if W is an invariant subspace of

⊕i=m
i=1 L2(S1,χAν) = H, exactly the same proof

as the one which was used for the Wiener lemma gives: (vi(x),PWvi(x)) = ‖PWvi(x)‖2
(the scalar product is taken in H). This says that the restriction of PW to the fiber at x

is a projection on a subspace Wx . Therefore,
∑i=m

i=1 ‖PWv(x)‖2 = dimWx . In our case,
dimHw(x) = 1 for ν almost all x, and we get, if B is the support of the spectral measure
of w,

∑i=m
i=1 ‖PHw

vi‖2 = ν(B)/ν(A) " 1. #

1.4.4. Spectral theorem and spectral invariants for one-parameter groups of unitary oper-
ators. By the Stone Theorem any continuous one-parameter groups of unitary operators
Ut : t ∈ R, Ut+s = Ut · Us in a Hilbert space H has the form Ut = exp itA where A is
a Hermitian operator (A∗ = A). Notice that A is not necessarily bounded. Nevertheless
A is uniquely defined on a dense subset as −i dUt

dt |t=0. The operator A or sometimes the
skew-Hermitian operator −iA is called the (infinitesimal) generator of the group Ut . The
spectral theorem for one-parameter groups of unitary operators takes the following form.

THEOREM 1.22. Let Ut = exp itA be a one-parameter groups of unitary operators in a
Hilbert space on H continuous in the strong operator topology. There exists a family of
locally finite positive measures on R uniquely defined up to equivalence (and called the
spectral types for the group)

ν1 ! ν2 ! ν3 ! · · · ! νn ! · · ·

such that the action of Ut on H is unitarily isomorphic to the multiplication by e2π itx ) on
the orthogonal sum

⊕

i"1
L2(R,νi ).

Accordingly the Hermitian infinitesimal generator A acts as multiplication by the indepen-
dent variable x in each L2(R,νi ).

Notice that in this case the maximal spectral type and multiplicity function for each indi-
vidual operator Ut are defined on the circle: they are obtained from the spectral types of the
group via the standard projection πt :R → S1, πt (s) = exp its. Thus spectral multiplicity
of individual operators tend to be greater than for the group. A typical example is the case
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of Lebesgue spectrum: every non-identity elements of a one-parameter group of unitary
operators with simple Lebesgue spectrum has countable Lebesgue spectrum.
Here is a simple but useful criterion of Lebesgue spectrum for one-parameter groups:

PROPOSITION 1.23. If the one-parameter group of unitary operatorsUt is unitarily equiv-
alent to the renormalized group Ust for any s > 0, then Ut has homogeneous Lebesgue
spectrum.

PROOF. It follows from the assumption that the infinitesimal generatorA of Ut is unitarily
equivalent to sA. But the spectral measures of sA are obtained from those ofA by applying
the multiplication by s on the real line. Hence the spectral measures are invariant under
these multiplications and Lebesgue is the only type satisfying this property. #

2. Spectral properties and typical behavior in ergodic theory

Now we will consider a single unitary operator U :H → H , or, equivalently, a unitary
representation of the group Z. The spectral measures in this case are measures on the
circle S1 (see Section 1.2.2). We will always assume that all measures we are considering
are finite. Most of the discussion below can be extended straightforwardly to the case
of discrete Abelian groups while in the continuous case certain subtle points appear. We
will address some of these points for the case of one-parameter groups of operators, i.e.
representations of R.

A NOTE ON TERMINOLOGY. We will apply the spectral notions discussed below for uni-
tary operators to measure preserving transformations if the Koopman operator in the or-
thogonal complement to the constants possesses the corresponding property. Thus we will
speak about transformations with Lebesgue spectrum, mixing, mildly mixing, rigid, and so
on. From now on, the scalar product will usually be denoted by (·, ·).

2.1. Lebesgue spectrum

2.1.1. Correlation decay. The maximal spectral type in a cyclic subspace L ⊂ H is
Lebesgue if and only if there exists v ∈ L such that the iterates Unv, n ∈ Z, form an
orthogonal basis in L. There are natural sufficient conditions for absolute continuity of the
spectral measure, e.g., a certain decay rate for the correlation coefficients, such as l2, but
non of such conditions is necessary since an L1 function on the circle may have very slowly
decaying Fourier coefficients. The most general decay condition sufficient to guarantee that
the spectral measure is actually equivalent to Lebesgue is an exponential decay

(v,Unv) " c exp
(
−β|n|

)

for some positive numbers c and β . For, in this case the Fourier transform of the sequence
(v,Unv) is a real-analytic function on the circle; it is nonnegative since it is a density of a
measure and by analyticity it can only have finitely many zeroes.
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The corresponding condition in the continuous time case is particularly useful because
in that case there is no convenient direct counterpart of the orthogonality condition above.

2.1.2. Countable Lebesgue spectrum in ergodic theory. A particular type of spectrum
which is ubiquitous in ergodic theory is countable Lebesgue spectrum, i.e. the Lebesgue
maximal spectral type with the multiplicity function identically equal to∞. The following
criterion is evident from the definition.
A unitary operator U :H → H has countable Lebesgue spectrum if and only if there

exists an infinite-dimensional closed subspace H0 ⊂ H such that
(i) H0 and UnH0 are orthogonal for n > 0 (or, equivalently for n 1= 0), and
(ii) H = ⊕

n∈Z UnH0.
As we already mentioned in the case of one-parameter group of operators if the infini-

tesimal generator A of the group has simple Lebesgue spectrum (i.e. the maximal spectral
type is the type of Lebesgue measure on the line) then the unitary operators exp(−itA)

have countable Lebesgue spectrum for every t 1= 0. Still the term “countable Lebesgue
spectrum” is reserved for the case where the generator has Lebesgue spectrum of infinite
multiplicity.
Here is a good illustration of how countable Lebesgue spectrum appears in ergodic the-

ory.

EXAMPLE 2.1. Consider an automorphism A of a compact Abelian group G. It preserves
Haar measure χ and the Koopman operator maps characters into characters. The characters
form an orthonormal basis in L2(G,χ). The cyclic subspace of each character is either
finite-dimensional (and hence the spectral measure is atomic and the eigenvalues are roots
of unity) or Lebesgue where the orbit of the character is infinite. Thus the spectrum of UA

in L20(G,χ) is in general a combination of pure point and Lebesgue. If A is ergodic (see
Section 3.3) the first case does not appear and the spectrum is Lebesgue. It is not difficult
to show that the number of orbits in the dual group is always infinite so Lebesgue spectrum
is always countable.

This conclusion extends with a slight modification to a more general class of affine maps
on compact Abelian groups. Such a map is a product (composition) of an automorphism
and a translation. In this case again the spectrum in general is a combination of pure point
and countable Lebesgue, however it can be mixed even in the ergodic case, see Exam-
ples 3.17 and 3.18.
Other standard examples of transformations with countable Lebesgue spectrum are

Bernoulli shifts introduced in Example 3.10 (see also [8, Section 3.3e]) and, more gen-
erally, transitive Markov shifts [8, Section 3.3f].

2.1.3. Hyperbolic and parabolic paradigms

Positive entropy, K-property, hyperbolic behavior. The main source of the presence of
countable Lebesgue part in the spectrum is positivity of entropy [8, Theorem 3.7.13], [12];
in particular, the completely positive entropy (the K-property) implies that the spectrum in
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the orthogonal complement L20 to the constants is countable Lebesgue [8, Theorem 3.6.9],
[12].
This kind of behavior appears in systems with hyperbolic and partially hyperbolic be-

havior [8, Section 6], [7,1,9]. Example 2.1 in the case when the group G is a torus Tn pro-
vides simple particular cases for both hyperbolic and partially hyperbolic situations. For, in
this case the automorphism is determined by an integer n×n matrix with determinant ±1.
The hyperbolic case corresponds to the situation when the matrix has no eigenvalues of ab-
solute value one; partially hyperbolic case appears when there are some such eigenvalues
but no roots of unity among them. See [8, Sections 5.1h and 6.5a].

Zero entropy; parabolic behavior. Countable Lebesgue spectrum also appears in many
zero entropy systems, sometimes accompanied by a pure-point part. This is typical for the
parabolic paradigm [8, Section 8] which appears in particular in many systems of alge-
braic origin and their modifications. See Examples 3.17 and 3.18, Section 6.2.2 and [10]
(especially Section 2.3a).

Horocycle flows. Now we will describe a particularly characteristic example of par-
abolic system which show how Lebesgue spectrum follow from a renormalization argu-
ments.
Let X be the manifold X = SL(2,R)/Γ where Γ is a discrete subgroup of finite co-

volume in SL(2,R). Consider the following one-parameter subgroup of SL(2,R): Ht =( 1 t
0 1

)
, t ∈ R.

The action of Ht by left translations on the right homogeneous space X preserves the
measure m on X induced by the Haar volume in SL(2,R). Let us denote this action ht ; it
is called the horocycle flow.

PROPOSITION 2.2. Every transformation ht , t 1= 0 has countable Lebesgue spectrum.

PROOF. Consider the one-parameter diagonal subgroup of SL(2,R);Gt =
(

et 0
0 e−t

)
and the

corresponding left action of Gt on X by gt ; the latter is called the geodesic flow.1
Direct calculation shows that the commutation relation GtHsG−t = Hset holds and

hence gthsg−t = hset . Thus the flows ht and hst for any positive s are metrically and
hence spectrally isomorphic. Hence by Proposition 1.23 the horocycle flow has homo-
geneous Lebesgue spectrum and each transformation ht , t 1= 0 has countable Lebesgue
spectrum. #

In fact, it is also true that the horocycle flow (i.e. its infinitesimal generator) has count-
able Lebesgue spectrum. For this it is enough to show that there are countably many mu-
tually orthogonal subspaces in L2(X,m) simultaneously invariant under the geodesic and
horocycle flows. Then the above argument can be applied separately to each of those sub-
spaces producing Lebesgue spectrum there.
To find such subspaces one can use elements of theory of unitary representations for

semisimple Lie groups; in this case SL(2,R). Namely, notice that the whole group SL(2,R)

1The geometric terminology came from the interpretation of SL(2,R) as the unit tangent bundle to the hyper-
bolic plane H2 which can be identified with the symmetric space SO(2)\SL(2,R), see, e.g., [79, Section 17.5].
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acts by left translations on X and the corresponding Koopman operators produce a uni-
tary representation of SL(2,R) in L2(X,m). Consider the compact subgroup of rota-
tions SO(2) ⊂ SL(2,R). One sees easily that the action of that group decomposes into
eigenspaces corresponding all the characters. Each such eigenspace is invariant under the
whole group SL(2,R).

2.2. Mixing and recurrence

2.2.1. Mixing. (See also [8, Section 3.6h].) A measure µ on the circle is called mix-
ing (or sometimes Rajchman) if its Fourier coefficients (correlation coefficients) µ̂n =∫
S1 zn dµ(z) converge to 0 as n → ±∞.
By the Riemann–Lebesgue lemma any absolutely continuous measure is mixing. How-

ever there are many mixing singular measures as well. To see this notice that the corre-
spondence between taking convolutions and multiplication of Fourier coefficients implies
the following

PROPOSITION 2.3. Convolution of two mixing measures is mixing. If for a measure µ and
for some m the mth convolution µ(m) = µ ∗ · · · ∗ µ of µ with itself is mixing, then µ is
mixing.

EXAMPLE 2.4. Let C be the projection of the standard (ternary) Cantor set on the unit
interval to the circle. Construct the “uniform” measure µ on C by assigning the measures
1/2n to the intersection of C with the intervals of nth order.2 This measure is obviously
singular. It is however mixing. This can be seen by looking at the convolution µ ∗ µ of
µ with itself. The convolution is absolutely continuous, and hence mixing (its density is
easy to calculate). Thus the Fourier coefficients of µ which are square roots of Fourier
coefficients of µ ∗ µ also vanish at infinity.

PROPOSITION 2.5. Any measure absolutely continuous with respect to a mixing measure
is mixing.

PROOF. Let µ be a mixing measure and ρ ∈ L1(S1,µ). We need to show that ρµ is a
mixing measure. We will prove decay of correlation coefficients without assuming non-
negativity of ρ. First, notice that multiplication by the independent variable correspond to
the shift in Fourier coefficients and hence preserves the decay of correlation coefficients
at infinity. Second, this decay is a linear property. Thus for any trigonometric polynomial
p the correlation coefficients of the complex measure pµ decay at infinity. Since trigono-
metric polynomials are dense in L1(S1,µ), the same property holds for ρµ. #

REMARK. The above argument naturally can be applied to the case of Lebesgue measure
and thus it gives a proof of the Riemann–Lebesgue Lemma.

2This is the Hausdorff measure corresponding to the exponent log2log3 which is equal to the Hausdorff dimension
of C.
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Mixing measures can be characterized in a geometric way as being asymptotically uni-
formly distributed. Let En :S1 → S1 be the nth power map: En(z) = zn. The pull-back
f ∗µ of the measure µ under a transformation f is defined by f ∗µ(A) = µ(f −1A) for any
µ-measurable set A.

PROPOSITION 2.6. A measure µ on the circle is mixing if and only if the sequence (En)
∗µ

weakly converges to Lebesgue measure as n → ±∞.

PROOF. Since the mth Fourier coefficient of the measure (En)
∗µ is equal to µ̂mn, mixing

implies that every non-zero Fourier coefficient of (En)
∗µ converges to 0 as n → ±∞while

the zero Fourier coefficients of all those measures are equal to one. Convergence of Fourier
coefficients for probability measures on the circle is equivalent to weak convergence. This
proves the “only if” part.
Conversely, weak convergence implies that the first Fourier coefficients of (En)

∗µwhich
are equal to µ̂n converge to zero as n → ±∞ implying mixing. #

By Proposition 2.5 mixing is a property of an equivalence class of measures. This justi-
fies the following definition.

DEFINITION 2.7. A unitary operator is called mixing if some (and hence any) measure of
maximal spectral type is mixing.

In fact, mixing can characterized directly:

PROPOSITION 2.8. A unitary operator U is mixing if and only if Un converges to 0 in the
weak operator topology as n → ∞.

2.2.2. Rigidity and pure point spectrum. (See also [8, Section 3.6e].) Rigidity is a prop-
erty of spectral measures which is opposite to mixing in a natural way.

DEFINITION 2.9. A measure µ on the circle is called rigid (or sometimes a Dirichlet
measure) if µ̂nk → µ(S1) for some sequence nk → ∞.

The contrast between rigidity and mixing is seen from the following geometric charac-
terization.

PROPOSITION 2.10. The measure µ is rigid if and only if for certain sequence nk → ∞
the sequence of measures (Enk )

∗µ weakly converges to a δ-measure.

LEMMA 2.11. If for a certain sequence nk → ∞ µ̂nk → αµ(S1) where |α| = 1, then for
any m ∈ Z, µ̂mnk → αmµ(S1).

PROOF. Fixing m, for every ε, there exists k0 such that for k > k0 if Ak = {θ ∈ S1:
|e2π inkθ − e2π iα| > ε}, then m(Ak) < ε2. The conclusion now follows from the fact that,
for complex numbers z1 and z2 such that |z1| = |z2| = 1, |zm

1 − zm
2 | " m|z1 − z2|. #
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PROOF OF THE PROPOSITION. If (Enk )
∗µ → δα , then by Lemma 2.11 for any natural

number p, (Epnk )
∗µ → δαp and we are able to produce a sequence lk = pknk such that

(Elk )
∗µ → δ1, which is just rigidity since the first Fourier coefficient of the measure

(Elk )
∗µ) is equal to µ̂lk . This also gives the converse. #

COROLLARY 2.12. Any measure absolutely continuous with respect to a rigid measure is
rigid.

Thus rigidity like mixing is also a property of an equivalence class of measures and
hence one can speak about rigid unitary operators.

PROPOSITION 2.13. Any atomic measure on S1 is rigid.

PROOF. For any atomic measure all but arbitrary small measure is concentrated on a finite
set. But for any finite set λ1, . . . ,λn ∈ S1 one can find a sequence nk → ∞ such that
λ

nk
i → 1, i = 1, . . . , n. #

For a given unitary operator U the closure of powers Un, n ∈ Z in the strong opera-
tor topology is a useful object whose structure is related to the spectral properties of U .
First, all of its elements are unitary operators, and it forms a Polish Abelian group under
composition. Let us denote this group by G(U).
It follows from the definition of rigidity that the operator U is rigid if and only if the

group G(U) is perfect.
Notice that the group of Koopman operators is a closed subgroup of the group of all

unitary operators in the strong operator topology (this is not true in weak topology). Thus
we have the following useful corollary.

COROLLARY 2.14. Any rigid measure preserving transformation T of Lebesgue space
has an uncountable centralizer, i.e. there are uncountably many measure preserving trans-
formations commuting with T .

In fact, unitary operators with pure point spectrum (i.e. operators whose maximal spec-
tral type is atomic) can be characterized by a property stronger than rigidity.

PROPOSITION 2.15. A unitary operatorU has pure point spectrum if and only if the group
G(U) is compact.

Thus, for any transformation with pure point spectrum a certain compact Abelian group
can be associated. It is not surprising then that such transformations can be represented
as shifts on compact Abelian groups. See Section 3.4.3 for a detailed discussion. At the
moment we just notice that given a compact Abelian group G any translation on G pre-
serves Haar measure χ and has pure point spectrum since characters are eigenfunctions for
it and characters form an orthonormal basis in L2(G,χ). Let us illustrate this by some con-
crete examples. Recall that a measure preserving transformation is ergodic if any invariant
measurable set is either a null-set or has null-set complement.
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EXAMPLE 2.16.
(1) Circle rotation. Let for α ∈ R

Rα :S1 → S1, Rαx = x + α (mod 1).

This rotation is ergodic if and only if α is irrational.
(2) Translation on the torus. For a vector α = (α1, . . . ,αn) ∈ Rn the translation Tα of

the n-torus

Tαx = x + α (mod 1)

is ergodic with respect to Haar measure is and only if α1, . . . ,αn and 1 are indepen-
dent over rationals.
The translation vector α is sometimes called the vector of frequencies and the

rational relations between its components are called resonances. Even if there are
no resonances there may be near resonances which play important role in causing
complications when the translation is modified in some way.

(3) Adding machine or odometer. An adding machine is an ergodic transformation with
pure point spectrum all of whose eigenvalues are roots of unity. In other words, it is
an ergodic shift on the dual to a subgroup of Q/Z, or by duality on a factor of the
group of ideles (Example 1.4). It can also can be characterized as the inverse limit
of cyclic permutations.
For example, a translation Tx0 on the group Zp of p-adic integers (p prime) is

ergodic is and only if x0 is not divisible by p.
(4) Shifts on solenoids. A solenoid is the inverse limit of tori of the same dimension.

2.2.3. Mild and weak mixing. (See also [8, Sections 3.6f,g].)

DEFINITION 2.17. A measure µ on the circle is called mildly mixing if no measure ab-
solutely continuous with respect to µ is rigid.

Notice that given a sequence nk → ∞, the space of all functions f ∈ L2(X,µ) for which
U

nk
T f → f is a unitary ∗-subalgebra. Hence by Proposition 1.2 if UT is not mildly mixing,

T has a rigid factor. Thus

T is mildly mixing if and only if it has no non-trivial rigid factors.

Proposition 2.13 implies that any mildly mixing measure is continuous (non-atomic).
The following characterization justifies calling non-atomic measures weak (or weakly)
mixing.
Recall that a subset S ⊂ Z is called a set of full density if

lim
n→∞

S ∩ [−n,n]
2n + 1 = 1.
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PROPOSITION 2.18. A measure µ on the circle is non-atomic if and only if for a set S of
full density

lim
n∈S,n→±∞

µ̂n = 0.

SKETCH OF PROOF. Let ∆ be the diagonal of S1 × S1. Fubini’s theorem implies that
(µ × µ)(∆) = ∑ |µ̂({λ})|2, where the summation is taken over the atoms of µ. Now we
have

∫ 1
N

N∑

n=1
exp

(
2iπn(x − y)

)
d(µ × µ) = 1

N

N∑

n=1
|µ̂n|2.

By Lebesgue theorem the left-hand side of this last equality converges, whenN → +∞, to
µ×µ(∆). A simple calculation shows the equivalence between limN→∞ 1

N

∑N
1 |µ̂n|2 = 0

and

lim
n∈S,n→±∞

µ̂n = 0

for a set S of full density. #

While checking convergence along a sequence of full density may present problems
there is an alternative criterion which is often convenient in the context of ergodic theory.

PROPOSITION 2.19. An equivalence class of measures on S1 is non-atomic if and only if
there exists a sequence nk → ∞ such that for any measure µ from this class (or, equiva-
lently, for an L1 dense set of such measures) µ̂nk → 0.

2.2.4. An elliptic paradigm

Diophantine and Liouvillean behavior. Simple rigid spectrum, whether atomic, mixed
or continuous, is the second type (after countable Lebesgue spectrum) ubiquitous in er-
godic theory and other branches of dynamics. These spectral properties are associated
with the elliptic behavior [8, Section 7] in its two manifestations, Diophantine and Li-
ouvillean [47]. Simplicity of the spectrum relies on criteria like Theorem 1.21, rigidity on
Proposition 2.10.
Diophantine paradigm is associated with rather simple and fully understood type of be-

havior: pure point spectrum with frequency vector which avoids too close near resonances,
see Example 2.16(2); it is of great importance in classical mechanics due to KAM the-
ory [30].
Liouvillean behavior is associated with simple singular (and usually continuous) rigid

spectrum and with a very fast periodic approximation, see Proposition 5.39, and for more
details, [81,78]; it is typical in the weak topology in the space of measure preserving trans-
formations and various other spaces of dynamical systems, see Theorems 5.47 and 5.49,
[47,78]. Although more exceptional from the point of view of classical and Hamiltonian
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mechanics, it is still unavoidable in typical perturbations of completely integrable systems,
twist maps and so on [70].

Time change in linear flows on T2. We will present now the most classical and very
simple situation where non-trivial Liouvillean behavior appears.
We begin with an irrational linear flow on the two-dimensional torus. We will denote

cyclic coordinates on T2 by x and y. Given a vector γ = (γ1,γ2) the flow {T t
γ } is generated

by the constant vector field with coordinates γ1,γ2 and has the form

T t
γ (x, y) = (x + tγ1, y + tγ2) (mod 1).

We assume that the slope γ1/γ2 is irrational which is equivalent to minimality or ergodicity
of the flow.
Now consider a time change of the flow. Namely take a positive C∞ function ρ and

consider the flow generated by the vector field (ργ1,ργ2). Denote the new flow by {St }.
This flow preserves the smooth measure ρ−1λ. It is also rigid, and has simple spectrum. If
the number γ1/γ2 is Diophantine, i.e. there exist positive numbers N and C such that for
any integers p and q ,

|γ1/γ2 − p/q| > C/qN

then there exists a C∞ diffeomorphism preserving the orbits which conjugates the flow
{St } to a linear flow and hence has pure point spectrum. This goes back to Kolmogorov
[94], see [8, Section 7.3], [78, Section 11.2] for proofs and discussions. Thus in the Dio-
phantine situation the orbit structure of time changes is rigid.
On the other hand, if the slope is not a Diophantine number then generically in the C∞

topology for ρ the flow {St } is weakly mixing [42] (see also [78, Section 13.3] for related
results and historical discussion). Furthermore, for some special values of the slope one
can find a real-analytic ρ for which the flow has mixed spectrum [48]. We will continue
discussion of this and similar situations in Section 5.6.3.

2.3. Homogeneous systems

We briefly mention now a very important class of dynamical systems which is discussed
in much greater detail in [10]; see also [4], especially Section 3.
Let G be a Lie group, Γ ⊂ G a lattice, i.e. a discrete group with the factor of finite

volume (compact or not). A homogeneous dynamical system is the action of a subgroup
H ⊂ G on the homogeneous space G/Γ by left translations. Both horocycle and geodesic
flows are examples of homogeneous dynamical systems where H is a one-parameter sub-
group. Even more basic examples are translations on the torus or one-parameter groups of
such translations (linear flows).
Homogeneous systems possess large symmetry since any such system is a part of a

transitive action of G by left translations. Due to this symmetry spectral analysis of ho-
mogeneous dynamical systems can be carried out with the help of the theory of unitary
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representations of Lie groups (see [10, Section 2.3]). While ergodic properties of homoge-
neous flows may be complicated and surprising (see Section 6.2.2) their spectral properties
are rather simple.
If H is a one-parameter subgroup of G the left action by H is called a homogeneous

flow.

THEOREM 2.20 [25]. The spectrum of any homogeneous flow is the sum of pure point and
countable Lebesgue.

A similar conclusion holds for homogeneous maps, i.e. the homogeneous actions of Z;
this of course follows immediately from Theorem 2.20 for most homogeneous maps since
such maps are parts of homogeneous flows.
This is similar to the case of automorphisms and affine maps on compact Abelian groups

(Section 2.1.2).

3. General properties of spectra for measure preserving transformations and
group actions

3.1. The realization problem and the spectral isomorphism problem

3.1.1. Formulation of the problems. Unitary operators which appear as Koopman oper-
ators associated with measure preserving transformations and, more generally, group ac-
tions, possess some special properties. The interface between the unitary operator theory
(and the theory of unitary group representations), and ergodic theory centers on two general
problems:

SPECTRAL REALIZATION PROBLEM. What are possible spectral properties for a Koop-
man operator or a group of such operators?

SPECTRAL ISOMORPHISM PROBLEM. Given two Koopman operators UT and US (or
groups) which are unitarily equivalent (i.e. have the same spectral invariants) what ex-
tra information is needed to conclude that the measure preserving transformations T and S
(or the corresponding group actions) are isomorphic? More specifically, one is interested
in the cases when such extra non-spectral invariants can be reasonably described, and, in
particular, when they are not needed at all.

Both of those problems go back to the founding text of the modern ergodic theory, the
1932 article by John von Neumann [155]. Concerning the Spectral Realization Problem
there are very few known restrictions, all of them quite general. The proofs are not difficult
and all results in this direction will be presented in the rest of this section.
Still, many simply sounding questions are unanswered. Here is a famous example.

PROBLEM 3.1. Does there exist a measure preserving transformation whose Koopman op-
erator has simple Lebesgue spectrum (or even Lebesgue spectrum of bounded multiplicity)
in L20(X,µ).
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On the other hand, there is a large number of “positive” results asserting existence of
measure preserving transformations with specific properties. This is achieved via a variety
of specific constructions. Essentially the whole later part of this survey is dedicated to the
development of these constructions and presenting specific examples, sometimes natural,
sometimes “exotic”.

3.1.2. Elementary restrictions

Invariance of constants. The most basic restriction on the spectral realization is pres-
ence of eigenvalue 1 in the spectrum, since constants are invariant functions. Thus the
maximal spectral type of any Koopman operator always has an atom at 1. Due to this sim-
ple observation by spectral properties of a measure preserving transformation one usually
means the corresponding properties of the operator UT in the orthogonal complement to
the space of constants, i.e. the space L20(X,µ) of square-integrable functions with zero
average. Sometimes, however, it is useful to remember presence of the atom at one which
we will naturally denote by δ1. Let µ0 be a measure of maximal spectral type in the space
L20(X,µ). Then µ, the maximal spectral type in L2(X,µ) can be represented by µ0 + δ1.
Consider the convolution

µ ∗ µ = (µ0 + δ1) ∗ (µ0 + δ1) = µ0 ∗ µ0 + µ0 + δ1 = µ0 ∗ µ0 + µ > µ

(equality and inequality signs refer to measure types).
This simple fact can be expressed in a way useful for the discussion of the convolution

problem (Section 3.5).

PROPOSITION 3.2. The maximal spectral type µ of the Koopman operator in the whole
space L2(X,µ) is dominated by its convolution µ ∗ µ.

Symmetry of the spectrum. Another, almost equally basic, is the symmetry of both the
maximal spectral type and the multiplicity function with respect to the involution χ →
χ−1 of the dual group G∗. This immediately follows from the fact the Koopman operator
preserves the complex conjugation in L2(X,µ).
In particular this implies the following restriction of the spectral realization.

PROPOSITION 3.3. Any Koopman operator is unitarily isomorphic to its inverse.

3.2. Rokhlin lemma and its consequences

3.2.1. The Rokhlin lemma. Recall that an action of a group is called free if the stationary
subgroup of almost every point in the space is trivial; for Z this means aperiodicity.
The Rokhlin lemma gives a way to produce an approximate section for a free action for

certain kinds of discrete groups, and therefore to control large pieces of orbits on a large
part of the space.
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In general, this is related to the existence of sets in the group which tile it. A set A

in a group G is said to tile G if there exists a family of elements of G, gi , i ∈ I , such
that G = ⋃

i∈I giA and the sets giA are mutually disjoint. All countable Abelian groups
can be endowed with Fölner sequences such that every set in the sequence tiles the group,
and therefore a version of the Rokhlin lemma can be stated in this framework. The proper
setting for the most general version of the Rokhlin lemma is in fact for actions of countable
amenable group. In this case there need not be any set in a Fölner sequence which tiles the
group. However the group can always be almost tiled by a finite number of elements in the
Fölner sequence which furthermore can be chosen as invariant as one wishes. This gives
rise to the Ornstein–Weiss version of the Rokhlin lemma for amenable groups which has
many important applications and in particular is the first key step in extending the Ornstein
isomorphism theory to actions of arbitrary amenable groups [121,122].
Rokhlin [137] considered only Z actions, see [12, Section 5] for a proof in that case.

Here we consider a free measure preserving action of Zd on a measure space (X,µ), see
[28,84].

THEOREM 3.4. Consider a free action of Zd on (X,µ) generated by d commuting au-
tomorphisms T1, T2, . . . , Td . For every ε > 0, and an integer N , there exists a set F ⊂ X
such that the sets T

n1
1 T

n2
2 , . . . , T

nd
d F , 0 " n1, n2, . . . , nd " N − 1, are mutually disjoint

and their union has measure greater than 1− ε.

REMARK. Notice that the assumption of freeness which is natural in the ergodic theory
setting is very restrictive in other branches of dynamics such as topological dynamics [8,
Section 2] or theory of smooth dynamical systems [8, Section 5] since periodic orbits form
an important ingredient of the orbit structure in many cases. For example, for hyperbolic
systems [8, Section 6] periodic orbits are dense.

PROOF. To simplify notations we consider the case d = 2, i.e. we consider a Z2 action on
(X,µ) generated by two commuting measure preserving transformations S and T . Fix an
integer L > N2/ε2. Since the action is free one can find, using the ergodic decomposition
(Section 3.3), a measurable set A such that:
(1) the sets SiT j (A), −L < i, j < +L are pairwise disjoint
(2) µy(A) > 0 for almost every y in the ergodic decomposition.
Thus

⋃
m"0,n"0 SmT nA = X and there exists M ′ such that for all M > M ′,

µ(
⋃
0!m,n!M SmT nA) > 1 − ε2. For an element x ∈ X its itinerary is an element ω

in {0,1}Z×Z where ωi,j = 1 if SiT jx is in A, ωi,j = 0 otherwise. We call M-itinerary
the restriction of the previous itinerary to the values of (i, j) which lie inside the square
CM = {(i, j): 0 " i, j " M − 1}. An itinerary ω being given, we consider Yω ⊂ Z2 the
union of these indices (i, j) ∈ Z2 such that ωi,j = 1. We call (Cy, y ∈ Yω) the tiling of R2
determined by the Voronoi cells

Cy =
{
x: |x − y| < |x − y′| for all y′ 1= y in Yω

}
.

For every such cell Cy ,we call y its center. We consider the partition PM of A whose atoms
are made of points which have the sameM-itinerary. A cell Cy being given, we consider Ty
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the union of the squares of the tiling of Z2 by squares of size N with base point y which lie
entirely insideCy . Each square c in Ty is of the form (ic, jc " i, j " ic +N −1, jc +N −1);
(ic, jc) is called the base of the square c. Assume that
(3)M is large enough (and in particular greater than M ′) so that the union of those y in

A such that Cy is not contained in a square of size less than ε2M occupies a fraction less
that ε2 of A.
For p ∈ PM with itinerary ωp , we consider Fp the union of SicT jc (p) for all ic, jc

which are the bases of squares in Ty for all y ∈ Yωp such that Cy is entirely in CM . Let
F = ⋃

p∈PM
Fp . Clearly the sets SiT jF , (i, j) ∈ CN are pairwise disjoint. (1), (2) and (3)

imply that the measure of their union is greater than 1− ε. #

3.2.2. Density of the maximal spectral type. An important corollary of the Rokhlin
lemma is the following restriction on the spectral realization.

THEOREM 3.5. The support of the spectral measure of the Koopman operator for an ape-
riodic transformation is the whole circle S1.

PROOF. If λ is not in the support of the spectral measure of UT then UT − λ × Id is
invertible in L2(X,A,m). However, for every ε, for every λ there exists f ∈ L2(X) such
that ‖f ‖ = 1 and ‖UT f − λf ‖ < ε. This is sufficient to imply what we asserted. Given ε

and λ, we construct f in the following way: take n 4 1/ε, and take a set F , given by the
Rokhlin lemma, such that the family of sets T iF , 0 " i " n − 1, is a disjoint family and
such that the measure of their union is ! 1− ε. Define now f as taking the constant value
λi on T iF , 0" i " n − 1, 1 on the complement of the union of the T iF . #

3.2.3. Combinatorial constructions. Rokhlin lemma has an interesting “negative” as-
pect. It implies that all asymptotic behavior of a measure preserving transformation de-
pends on sets of arbitrary small measure and hence can be altered in an arbitrary way
by changing the action on such a set. In the case of a single transformation this can be
rephrased by saying that if one defines the uniform topology by the metric

du(T ,S) = µ{x: T x 1= Sx}

then

PROPOSITION 3.6. Conjugates of any aperiodic transformation are dense in the uniform
topology in the set of all aperiodic measure preserving transformations.

PROOF. Fixing n and ε construct Rokhlin towers with given n and ε for two aperiodic
transformations T and S. Thus the towers have the form T iF and SiF ′, i = 0,1, . . . , n−1,
correspondingly. Without loss of generality we may assume that the bases F and F ′ of two
towers have the same measure. Pick some measure preserving transformation h :F → F ′
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and define H on T iF as Si ◦ h ◦ T −i for every i = 0,1, . . . , n − 1. Complete H in an
arbitrary way to a measure preserving transformation of X. Obviously

H ◦ T ◦ H−1 = S on
n−1⋃

i=0
SiF ′,

hence

du

(
H ◦ T ◦ H−1, S < ε

)
. #

This is somewhat deceptive however. Small sets determining asymptotic behavior be-
come more and more complicated as their measure decreases.
A related fact is that the base F of a Rokhlin tower and its images although of small

measure normally become “diffused” all over the space. The idea of looking at transfor-
mations for which the level sets of Rokhlin towers stay sufficiently “compact” leads to the
notion of rank (Section 5.2.2) and the concept of periodic approximation (Section 5.4) as
well as to the class of constructions known as cutting and stacking discussed in Section 5.2.

3.3. Ergodicity and ergodic decomposition

3.3.1. Definitions

DEFINITION 3.7. A measure preserving transformation T : (X,µ) → (X,µ) is ergodic if
1 is a simple eigenvalue of the Koopman operator UT .

Equivalently, T is ergodic is any T -invariant measurable set A is either null (µ(A) = 0)
or co-null (µ(X \ A) = 0).
For an arbitrary measure preserving transformation T consider the space IT of invariant

functions for the Koopman operator UT . This space is generated by characteristic func-
tions of invariant sets and by multiplicativity the product of UT -invariant functions is also
UT invariant. Thus IT is a unitary subalgebra of L2(X,µ) (Proposition 1.2) and hence it
defines a factor of T on which T obviously acts as the identity. Denote the measurable
partition corresponding to that factor by ηT . The transformation T acts on elements of this
partition preserving the system of conditional measures. Ergodic Decomposition Theorem
[8, Theorem 3.4.3] states that for almost every c ∈ ηT T acts ergodically with respect to
the conditional measure µc. See [8, Sections 4.2d, 4.2e] for a more detailed discussion and
references to detailed proofs.

DEFINITION 3.8. A measure preserving transformation is called totally ergodic if any of
its non-zero powers is ergodic.

Total ergodicity is equivalent to the absence of roots of unity (other than 1 itself) among
the eigenvalues. The inverse limit of totally ergodic transformations is totally ergodic.
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Adding machines from Example 2.16(3) are interesting examples of ergodic but not to-
tally ergodic transformations. This simple property is important in various non-spectral
aspects of ergodic theory. A typical situation where total ergodicity plays a role is the fol-
lowing: when one considers the ergodic averages of an L2 function taken at iterates which
are perfect squares, there is convergence in L2 and also almost everywhere (this is a deep
theorem of Bourgain [23]); however the limit is the integral of the function only in the case
when the transformation is totally ergodic.

3.3.2. Ergodicity and spectrum. Thus, the study of spectral properties of general mea-
sure preserving transformations can be separated into two questions: (i) finding ergodic
decomposition, in particular establishing ergodicity, and (ii) studying spectral properties
of the operators which appear on the ergodic components. Establishing ergodicity for a
particular transformation or a class of transformation may be highly non-trivial. However
in this survey we will primary (although not exclusively) discuss spectral and other closely
related properties for ergodic measure preserving transformations. The argument for sep-
arating the study of ergodic decomposition from spectral analysis in the ergodic case may
be illustrated by the following example which demonstrate that some properties of ergodic
decomposition are non-spectral.

EXAMPLE 3.9. Let T and S be two ergodic measure preserving transformations on the
measure spaces (X,µ) and (Y,ν) respectively. For any 0 < t < 1 consider the space
Xt

def= X ∪ (Y × [0, t]) with the probability measure µt
def= (1 − t)µ + ν × λ, where λ

is Lebesgue measure. Let Tt be defined on Xt as T on the X part and as S × Id on the
Y × [0, t]. Obviously the spaces of ergodic components for Xt for different t are not iso-
morphic because this space contains exactly one atom of measure t . Hence Tt for different
t are not isomorphic. However, they are spectrally isomorphic since they all have count-
able multiplicity for the eigenvalue one and the spectrum in the orthogonal complement to
invariant functions is the union of the spectrum of UT and the spectrum with the maximal
spectral type of US and countable multiplicity.

3.3.3. Difference between spectral and metric isomorphism in the ergodic case

Entropy as an extra invariant. The following classical example shows that the Spectral
Isomorphism Problem is non-trivial even in the ergodic situation.

EXAMPLE 3.10. Consider the Bernoulli shift σN on the space ΩN of bi-infinite se-
quences of an alphabet N symbols provided with the product measure µp where p =
(p0, . . . , pN−1) is a probability distribution on the alphabet.
The spectrum of this transformation is always countable Lebesgue. This can be readily

seen as follows. Let for n ∈ Z, Hn be the subspace of L20(ΩN,µp) of all functions which
depend only on coordinates ωk of the sequence ω ∈ ΩN with k " n. By definition of the
shift one has UσN Hn = Hn+1. The spaces Hn generate L20(ΩN,µp) since every function
can be approximated by a function which depends only on finitely many coordinates. Sim-
ilarly

⋂
n∈Z Hn = {0}. Now let Gn be the orthogonal complement to Hn in Hn+1. Obvi-
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ously these spaces are infinite-dimensional; they are orthogonal to each other by definition,
UσN Gn = Gn+1 and

⊕
n∈Z Gn = L20(ΩN,µp).

However the entropy −∑N−1
i=0 pi logpi is an invariant of metric isomorphism [8, Sec-

tion 3.7] so there are uncountably many non-isomorphic measure preserving transforma-
tion with countable Lebesgue spectrum.

This example directly extends to the case of Zk actions and less directly to the
continuous-time case [12].
In the case of zero entropy extra invariants including Kushnirenko’s sequence entropy

[97] and slow entropy [8, Section 3.7l], [83] sometimes distinguish spectrally isomorphic
systems; see [97] for a classical example of non-isomorphic flows with countable Lebesgue
spectrum and zero entropy which are distinguished by sequence entropy.

Asymmetry of metric isomorphism. Entropy shares with the spectral invariants the
property of being symmetric with respect to the reversal of time [8, Section 3.7i(4)] and
thus never distinguishes a transformation from its inverse. However there are instances
where T and T −1 are not metrically isomorphic. The earliest examples of that phenomena
were found in 1968 by S. Malkin [110] and are not particularly exotic: the spectrum is
simple and the transformation itself is a two-point extension of an irrational rotation Rα

with only four discontinuity points. These transformations have zero entropy. An interest-
ing criterion which helps to decide whether a transformation T is conjugate to its inverse
is in [66]. It implies for example that is the square of the conjugating map S is ergodic then
all essential values of the multiplicity function for T are even.

3.4. Pure point spectrum and extensions

3.4.1. Multiplicative structure of eigenfunctions. As we pointed out, ergodicity is a spec-
tral invariant: it is equivalent to 1 being a simple eigenvalue.
The complex conjugate of an eigenfunction is also an eigenfunction with the complex

conjugate eigenvalue.
Ergodicity implies that eigenfunctions have constant absolute value: if UT f = λf then

UT (f · f̄ ) = UT (f ) · UT (f̄ ) = λλ̄f f̄ = f f̄ ,

hence f f̄ ≡ const. Furthermore, both the eigenfunctions and the eigenvalues for an er-
godic transformation form a group invariant under complex conjugation. Consequently
linear combinations of eigenfunctions form an ∗-algebra and hence their L2 closure is an
invariant unitary ∗-subalgebra of L2(X,µ) which we will denote byK(T ). Thus by Propo-
sition 1.2 K(T ) determines a factor of T called the Kronecker factor of T . We will denote
this factor transformation by TK; it is the maximal factor with pure point spectrum [156,
29]. The measurable partition corresponding to the Kronecker factor will also be denoted
by K(T ).
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3.4.2. The isomorphism theorem. In the case of pure point spectrum the Spectral Isomor-
phism Problem has a complete and optimal solution.

THEOREM 3.11 (von Neumann Discrete Spectrum Theorem). Any two ergodic measure
preserving transformations with pure point spectrum that are spectrally isomorphic (i.e.
have the same groups of eigenvalues) are metrically isomorphic. A complete system of
invariants is given by the countable subgroup Γ ⊂ S1 of eigenvalues.

SKETCH OF PROOF. Let T : (X,µ) → (X,µ) be an ergodic measure preserving transfor-
mation with pure point spectrum and let Γ be the group of eigenvalues for UT . Let x0 be a
common Lebesgue point for all eigenfunctions of UT . Denote for each eigenvalue γ ∈ Γ
by fγ the unique eigenfunction for which the Lebesgue value at x0 is 1. Then

fγ1γ2 = fγ1fγ2 . (3.1)

Now identify Γ with the group of characters of the compact dual group Γ ∗ and denote the
character on Γ ∗ corresponding to the evaluation at γ by χγ . Thus, we have orthonormal
bases {fγ }γ∈Γ and {χγ }γ∈Γ in the Hilbert spaces L2(X,µ) and L2(Γ ∗,λ) correspond-
ingly, where λ is the normalized Haar measure.
Now extend the correspondence fγ → χγ by linearity to a unitary operator

V :L2(X,µ) → L2(Γ ∗,λ), which is multiplicative on the eigenfunctions by (3.1) and
preserves complex conjugation. Their finite linear combinations are dense in L2(X,µ), so
V is generated by a measure preserving invertible transformation H : (X,µ) → (Γ ∗,λ).
One immediately sees that V UT V −1χγ (s) = γχγ (s) = χγ (s0s) for any s ∈ Γ ∗, hence
H ◦ T ◦ H−1 = Ls0 . #

For another proof see Section 4.1.2(6). See also [29, Section 12.2] for yet another proof
and detailed discussion.

3.4.3. Representation by compact Abelian groups translations

THEOREM 3.12. An ergodic transformation with pure point spectrum whose group of
eigenvalues is Γ is metrically isomorphic to the translation on the compact group Γ ∗

of characters of Γ , considered as a discrete group, by the character s0 that defines the
inclusion Γ ↪→ S1. The invariant measure is Haar measure.
Furthermore, every countable subgroup of the unit circle appears as the group of eigen-

values for an ergodic measure preserving transformations of a Lebesgue space with pure
point spectrum.

Thus, translations on compact Abelian groups provide universal models for ergodic
transformation with pure point spectrum. This justifies looking for criteria of ergodicity
for such translations as well as considering characteristic examples.

PROPOSITION 3.13. Translation Th0 on a compact Abelian group H , Th0(h) = hh0 is
ergodic with respect to Haar (Lebesgue) measure if and only if for any character χ ∈ H ∗

χ(h0) 1= 1.
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Furthermore, ergodicity with respect to Haar measure is equivalent to topological tran-
sitivity, minimality and unique ergodicity.

Recall that the weak topology on the group of all measure preserving transformations of
a Lebesgue space coincides with the strong operator topology for the Koopman operators.

PROPOSITION 3.14. The centralizer of an ergodic translation Th0 on a compact Abelian
groupH in the weak topology on the group of all Haar measure preserving transformations
of H consists of all translations of H .

This implies that ergodic transformations with pure point spectrum possess a certain
kind of rigidity: Isomorphism and factor maps between such systems are rather limited.
Notice that the centralizer described in Proposition 3.14 coincides with the closure

G(UT ) of the powers of UT . By Proposition 2.15 if T has pure point spectrum then G(UT )

is a compact Abelian group. The multiplication by UT is a translation on that group which
preserves Haar measure χ . It follows from Theorems 1.6 and 3.11 that

PROPOSITION 3.15. If a measure preserving transformation T has pure point spectrum
than the multiplication by UT on (G(UT ),χ) is metrically isomorphic to T .

3.4.4. Invariance of the spectrum with respect to the discrete part. By comparing the cor-
relation coefficients for an arbitrary function g ∈ L20 with those of the function f · g where
f is an eigenfunction of absolute value one with the eigenvalue exp2π iα one sees that
the spectral measure λgf is obtained from λg by rotation by α. The same argument applies
to orthogonal functions with the same spectral measure. Hence we obtain the following
general spectral property of measure preserving transformations.

THEOREM 3.16. The maximal spectral type and the multiplicity function of the operator
UT induced by an ergodic measure preserving transformation T is invariant under multi-
plication by any eigenvalue.

3.4.5. The Kronecker factor. By Theorem 3.12 the Kronecker factor defined in 3.4.1 is
isomorphic to a particular translation on the dual to the group of eigenvalues. The Kro-
necker factor is the simplest example of a characteristic factor for an ergodic measure
preserving transformation. Other examples include the maximal distal factor defined in the
next subsection whose characteristic property appears in Proposition 4.5.
As was explained in Section 1.1.1 T itself is isomorphic to a skew product transforma-

tion over its Kronecker factor.

EXAMPLE 3.17 (Affine twist on the torus). An affine map of an Abelian group is a com-
position of an automorphism and a translation. Fix an irrational number α and consider the
following affine map of T2:

Aα(x, y) = (x + α, x + y) (mod 1).
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This map has mixed spectrum. The Kronecker factor is the circle rotation Rα , the spectrum
in the orthogonal complement to this factor is countable Lebesgue. This is the simplest
example of a transformation with a quasi-discrete spectrum [13].

Transformations with quasi-discrete spectrum provide easiest examples of ergodic spec-
trally isomorphic transformations with zero entropy which are not metrically isomorphic.
This possibility was mentioned in a different context in Section 3.3.3. Here is a simple
example in the present context.

EXAMPLE 3.18. Consider the following affine map on T3,

Bα(x, y, z) = (x + α, x + y, y + z) (mod 1).

The maps Aα and Bα are spectrally isomorphic. In both cases there is the same pure point
part (the Kronecker factor is the rotation Rα) plus countable Lebesgue spectrum in the
orthogonal complement. However Aα is a factor of Bα and a simple argument shows that
any multiplicative correspondence must preserve this factor [13].

Proposition 3.14 provides for certain restrictions on isomorphisms between transforma-
tions with a pure point component in the spectrum. Such a transformation is an extension
of its Kronecker factor. A particularly interesting case is those of a finite extensions when
the measurable partition K(T ) has finite elements. By ergodicity it follows that the number
of elements is almost everywhere constant, say, equal to n, and hence such a transforma-
tion is metrically isomorphic to a skew product transformation on H × {0,1, . . . , n − 1} of
the form

T (x,m) = (Thx,σxm),

where σx ∈ Sn, the permutation group. We will briefly return to this subject in Section 3.6.3
and in more detail is Section 5.8.

3.4.6. Distal systems. Transformations with quasi-discrete spectrum and finite exten-
sions are specimens of a more general class of systems which appears in many cases, in
particular in the Furstenberg ergodic theoretical proof of the Szemeredi’s theorem) [60,2].

DEFINITION 3.19. Consider an ergodic transformation (Y,B,µ,S), a compact group G

with a closed subgroup H and a measurable mapping φ :Y → G. Call the quotient G/H

Z and equip Z with the Borel algebra C and the Haar measure ν. The transformation
Sφ acting on X = Y × Z by Tφ(y, z) = (S(y),φ(y)z) leaves the product measure µ × ν

invariant. Sφ is called an isometric extension of S.

DEFINITION 3.20. A transformation T is said to be distal if there exists a countable fam-
ily of T -invariant factor algebras indexed by ordinals Aη, η " η0, such that A1 = ν (the
trivial algebra), Aη0 = A, for every ξ < η, Aξ ⊂ Aη, T restricted to Aη+1 is an isometric
extension of its restriction to Aη and if ξ is a limit ordinal, Aξ = lim ↑Aη , (η ↑ ξ).
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PROPOSITION 3.21. Every ergodic measure preserving transformation has a unique max-
imal distal factor, i.e. a distal factor such that any other distal factor is contained in it.

The distal factor contains Kronecker factor and is another example of a characteristic
factor. It is trivial if and only if the transformation is weakly mixing. On the other hand, it
may contain functions whose spectral type is mixing or even Lebesgue as in Examples 3.17
and 3.18.
Thus it is not defined in spectral terms.

3.5. The convolution problem

3.5.1. Discrete and mixed spectrum. In this section we will mean by the maximal spec-
tral type of a transformation the maximal spectral type in the whole space L2 including the
atom δ1 as was discussed in Section 3.1.2. Notice that the group property of the eigenvalues
can be expressed equivalently as equivalence of the maximal spectral type of an ergodic
transformation with pure point spectrum and its convolution. Thus we obtain the following
statement which strengthens Proposition 3.2 in this case.

COROLLARY 3.22. An atomic measure µ on the unit circle belongs to the maximal spec-
tral type of the Koopman operator for an ergodic measure preserving transformation if and
only if µ is equivalent to µ ∗ µ.

Furthermore, Theorem 3.16 is equivalent to the following statement.

COROLLARY 3.23. If µ is a measure of the maximal spectral type for an ergodic measure
preserving transformation and µd its atomic part then the convolution µ∗µd is equivalent
to µ.

3.5.2. Continuous spectrum. Observations above lead to a following question related to
the general Spectral Realization Problem.

PROBLEM 3.24. What are connections between the maximal spectral type of an ergodic
measure preserving transformation and its convolution with itself?

We will see below (Theorem 5.15, Propositions 5.43 and 5.44, and Theorem 5.49) that in
general those measures are not directly connected. On the other hand, let us notice that for
a weakly mixing transformation T the Cartesian powers T × T , T × T × T , etc. including
the infinite Cartesian power T (∞) can be easily analyzed spectrally. In particular, if µ is
the maximal spectral type of UT in L20 then for any n ∈ N ∪ ∞ the maximal spectral type
of the n Cartesian power of T is equal to

n∑

i=1
µ(i),
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where µ(n) is the convolution of n copies of µ. In particular, the measure
∑∞

n=1µ(n), the
maximal spectral type of T (∞), is equivalent to its convolution. (See also Section 4.1.3.)
This implies the following partial result related to the Spectral Realization Problem.

PROPOSITION 3.25. If the class of a non-atomic measure µ appears as the maximal spec-
tral type of an ergodic measure preserving transformation then for any n ∈ N ∪ {∞} the
class of the measure

∑n
i=1µ(i) also appears a maximal spectral type of an ergodic mea-

sure preserving transformation.

An effective method for realizing maximal spectral types is given by the construction of
Gaussian dynamical systems (Section 6.4). It implies one of the few general results in the
direction of realization of spectral types.

THEOREM 3.26. Any non-atomic measure µ on the unit circle symmetric under the re-
flection in the real axis and equivalent to µ ∗ µ appears as a measure of maximal spectral
type of an ergodic measure preserving transformation.

This theorem follows directly from Proposition 6.12 by taking the Gaussian transforma-
tion Tµ.

3.6. Summary

3.6.1. General restrictions. In this section we have described all known general restric-
tions on the spectral properties of ergodic measure preserving transformations which then
has to be taken into account in the discussion of the Spectral Realization Problem. For the
sake of convenience let us summarize these restrictions:
Let T be an ergodic measure preserving transformation of a Lebesgue space. Then the

Koopman operator UT has the following properties:
(1) One is always a simple eigenvalue of UT .
(2) All eigenvalues are simple and form a finite or countable subgroup of the unit circle

S1 ⊂ C.
(3) The maximal spectral type and the multiplicity function are symmetric under the

reflection in the real axis.
(4) The maximal spectral type and the multiplicity function are invariant under multi-

plication by the eigenvalues.
(5) The support of the maximal spectral type is the whole circle.

3.6.2. Realization results. Possibility of particular spectral properties for Koopman op-
erators is proven by demonstrating pertinent examples which may either appear in the
course of study of specific classes of systems or are constructed on demand. The state of
our knowledge for the cases of the full spectral invariants or even just the maximal spec-
tral type is much less advanced then for the case of the possible sets of values for the
multiplicity function.
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For the former problem there are very few results asserting that a given specific set
of spectral data or even a given maximal spectral type can be realized. Theorem 3.26 is
almost an exception in that respect. On the other hand, there are many examples showing
possibility of realization of certain properties of the spectral type. An outstanding example
is the possibility (see Theorem 5.15) and in fact genericity of the mutual singularity of the
maximal spectral type inL20(X,µ) and all its convolutions discussed in Section 5.4 and [78,
Section 3.3], which demonstrates an extreme “negative” situation for the Problem 3.24.
Another example is extreme “thinness” of the maximal spectral type for a generic measure
preserving transformation which follows from very fast periodic approximation, cyclic (see
Section 5.4), or, more generally, homogeneous [78, Section 5] which is a spectral property
[78, Corollary 5.3].
In one considers the spectral multiplicity by itself, in other words, asks about what sub-

sets of N ∪ ∞ appear as the sets of essential values of the multiplicity function for the
Koopman operator in L20, the constructive approach goes much further toward a definitive
answer. No restrictions on the set of essential values are known and there is an impressive
list of sets which do appear as well as certain technology which allows to add many new
examples once some key cases have been constructed. Here is an incomplete list of cases
when realization is possible:
(1) If s subset S ⊂ N is realized then S ∪ {∞} is realized.
(2) Any finite or infinite subset of N containing 1 [65,100].
(3) Any finite or infinite subset of even numbers containing 2.
(4) {2,3}, {3,6} [78].
(5) {n} for any n ∈ N [17].
So one may venture to conjecture that no restriction on the set of essential values of

spectral multiplicity in L20 exist.
Let us mention that the notion of multiplicity makes sense also for the action of the

Koopman operator in Lp . An open question is the following: Does every transformation
have simple spectrum L1? An equivalent way to formulate the question is to ask whether
for every ergodic transformation T , there exists an L1 function φ such that the L1 closure
of the linear span of the T nφ is the whole of L1. More generally, does there exist, for
every p < q a transformation whose Koopman operator has a cyclic vector in Lp but has
no cyclic vector in Lq?

3.6.3. Extra-spectral information. Theorem 3.4.2 proved by von Neumann in [155] orig-
inally arose some hope that spectrum may serve as a basis of classification for measure
preserving transformations up to metric isomorphism.
It later became apparent that for certain classes systems with non-trivial Kronecker fac-

tors such as finite or compact group extensions metric isomorphisms exhibit certain rigid-
ity properties. The simplest of those is of course is Proposition 3.14, namely the fact that
for an ergodic translation on a compact Abelian group measurable centralizer coincides
with algebraic one (other translations) and hence every measurable isomorphism between
two such translations is algebraic. Since the Kronecker factors of isomorphic transforma-
tions should match this restricts isomorphisms between extensions [19,13,110]. In some
cases this allows a complete metric classification of extensions. Abramov’s classification
of transformations with quasi-discrete is a prime example [13]. In other situations classifi-
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cation depends on cohomology classes of certain cocycles which may or may not behave
regularly. Rigidity phenomena also appear in certain weakly mixing transformations, for
example for those where measurable centralizer is sufficiently small. The notion of self-
joining discussed in Section 4.3 is a useful tool of studying rigidity properties beyond pure
point spectrum and simple extensions.
There are some exceptional cases when continuous spectrum provides the complete met-

ric invariant in analogy with the pure point spectrum case. The Kronecker Gaussian sys-
tems provide the prime example, see Section 6.4.3 [54]. In is not quite clear to what extent
very thin continuous spectral measures with strong arithmetic properties (concentration
around roots of unity of particular orders) may carry substantial information about metric
isomorphism; this information is certainly not complete as [110] and similar examples with
continuous spectrum show.
In general, natural non-spectral invariants do not match well with the spectrum. One

example where classification of systems with a fixed spectral type looks hopeless is the
case of countable Lebesgue spectrum. Recall that every K-system has countable Lebesgue
spectrum. On the other hand, every ergodic transformation with positive entropy induces a
K-automorphism on some subset, see Theorem 5.65 [120]. Thus any positive entropy class
of Kakutani equivalent transformations contains a transformation with countable Lebesgue
spectrum. But complete classification up to Kakutani equivalence does not seem more
feasible than classification up to metric isomorphism. For basic information on Kakutani
(monotone) equivalence see [75,118] and for a summary [12, Section 13].

4. Some aspects of theory of joinings

4.1. Basic properties

See [12, Section 3.1, 3.2]. Unlike the other parts of this survey in this section we will often
indicate the σ -algebra of measurable sets in our description of dynamical systems. The
reason is that we will consider several different invariant measures for the same transfor-
mation.

4.1.1. Definitions

DEFINITION 4.1. Given two dynamical systems (measure preserving transformations) T

acting on (X,A,m) and S acting on (Y,B,µ), a joining is a probability measure λ on the
Cartesian product (X×Y,A⊗B) which is T ×S invariant and such that λ(A×Y) = m(A)

for all A in A and λ(X × B) = µ(B) for all B in B.

Joining of several transformations are defined similarly. Joinings were introduced by
H. Furstenberg [59]. It is a powerful tool in a great variety of questions in ergodic the-
ory, both spectral and non-spectral. The survey [151] presents a compact treatment of the
subject. The book [62] contains extensive information about joinings and in fact repre-
sents an attempt to develop the core part of ergodic theory around that notion. See also
[6, Section 1.3] for interesting insights and especially for comparison of relevant measure-
theoretic and topological concepts and results.
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Note that the set of joinings is never empty since there is always the independent joining
λ = m × µ but this may be the only one, see Section 4.2.

4.1.2. Principal constructions. We list now several basic constructions related to join-
ings. We will restrict ourselves to the case of two transformations since multiple joinings
usually are treated similarly.
(1) Ergodic decomposition of a joining.When two systems are ergodic, there always ex-

ists an ergodic joining between them. For, ergodic components of a joining measure
between ergodic systems are joinings too.

(2) Factors as joinings. Considering two systems given as in the definition we call V
and H the algebras A × Y and X × B respectively. If H ⊂ V (λ) (by which we
mean that for every set A in H there exist a set B in V such that λ(A∆B) = 0)
then (Y,B,µ,S) is a factor of (X,A,m,T ). (For this we need that both measure
spaces are Lebesgue.) Conversely, if φ is the factor map from X to Y , and A × B is
a rectangle in A ⊗ B, the joining defined by λ(A × B) = m(A ∩ φ−1(B)) satisfies
the inclusion H ⊂ V .

(3) Isomorphisms as joinings. In the same way a joining λ such that V = H (λ) defines
an isomorphism between the two transformations, with the same converse as before:
An isomorphism gives rise to a joining for which V = H.
Weak isomorphism means that there exists two joinings λ1 and λ2 such that H ⊂

V (λ1) and V ⊂ H (λ2).
(4) Relatively independent joining over a common factor. If two transformations have

isomorphic factors, a useful construction is the relatively independent joining above
this common factor. If A1 and B1 are the two invariant subalgebras of A and B
respectively such that T restricted to A1 is isomorphic to S restricted to B1, we
extend the joining λ1 between these two algebras given by the isomorphism as in (3)
which identifies them (we call the global algebra of this object C) to a joining λC of
the whole product in such a way that A and B are relatively independent given C.
This is done by defining, for a product set A × B its λC measure by taking the
integral for the measure λ1 of the product of EA11A × EB11B . This makes sense as
λ1 is a measure on A1 ⊗B1.

(5) Topology in the set of joinings. We introduce a topology in the set of joinings of
(X,A,m,T ) and (Y,B,µ,S) in the following way: Take An, n ! 1, and Bn, n ! 1,
two sequences of sets dense in A and B respectively (the density is for the topol-
ogy associated to the distance between sets which is the measure of the symmetric
difference). Given two joinings λ1 and λ2 define

δ(λ1,λ2) =
∑

m,n"1

1
2m+n

×
∣∣λ1(Am × Bn) − λ2(Am × Bn)

∣∣.

δ is obviously a distance. The set of joinings is compact in the topology generated
by this distance.

(6) Proof of Theorem 3.4.2 via joinings. There is a nice proof using joinings, due to
Lemańczyk and Mentzen [106] of the von Neumann Isomorphism Theorem 3.4.2.
We are going to show that any ergodic joining between two such transformations
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(which always exists by (1)) is in fact an isomorphism. The L2 space of both trans-
formations is generated by the eigenfunctions (because they have discrete spectrum),
and since the joining is ergodic, every eigenvalue in this joining must be simple. But
by spectral isomorphism both transformations have the same eigenvalues and there-
fore the corresponding eigenfunctions for the ergodic joining are necessarily L2(V)

and L2(H) measurable. This forces V = H for our joining whence the announced
isomorphism.

4.1.3. Spectral analysis of Cartesian products. Since there is always the independent
joining between any two transformations it is appropriate now to describe the spectral
properties of the Cartesian product of two measure preserving transformations with respect
to the product measure. The Koopman operator of the Cartesian (direct) product T × S is
isomorphic to the tensor product of UT and US . This is a particular case of the tensor
products of representations described in Section 1.3.3. Assume that the maximal spectral
types of the two Koopman operators are represented by the measures µ and ν (including
the δ measure at 1) with multiplicity functions m and m′.

PROPOSITION 4.2. The maximal spectral type of T × S is represented by the convolution
µ ∗ ν.
The multiplicity function m at the point λ ∈ S1 is calculated as follows: take the product

µ × ν on the two-dimensional torus T2 and consider the system of conditional measures
with respect to the partition of T2 into the “diagonal” circles λ1 + λ2 = c.
(1) If the conditional measure at c = λ is not supported in the finite number of points

then m(λ) = ∞.
(2) Otherwise, let the support of the conditional measure be the points (λ11,λ

1
2), . . . ,

(λn
1,λ

n
2). Then

m(λ) =
n∑

i=1
m1

(
λi
1
)
× m2

(
λi
2
)
.

A similar albeit more complicated description can be given in the case of Cartesian
product of several transformations.

4.2. Disjointness

Joinings provide a good way to compare transformations; more precisely, how far is the
isomorphism class of a transformation from that of another. We saw that when two trans-
formations are isomorphic, there is a joining which identifies V and H. At the opposite
end, two transformations are said to be disjoint when the product joining is the only join-
ing between them. (That is for every joining λ, V ⊥ H(λ).) This notion was introduced by
H. Furstenberg in his seminal paper [59]. One may say that disjoint transformations have
as little is common as possible, e.g., no common factors since if there is one there is also
the relatively independent joining over it.
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Disjointness is also a tool, if we know that the restrictions of a transformation T to two
invariant algebras are disjoint, to show independence of these algebras. The simple obser-
vation that the identity is disjoint from any ergodic transformation has shown surprising
efficiency in various contexts.

PROPOSITION 4.3. Two transformations whose spectral types are mutually singular are
disjoint. In particular, rigid transformations are disjoint from mildly mixing transforma-
tions.

PROOF. Assume that T1 and T2 are two transformations with spectral types ν1 and ν2 on
the orthogonal complement of constants which are mutually singular. Consider a joining λ

between them and let f and g be in L2(V) and L2(H) respectively, both with 0 integral.
The projection of f in Hg (the cyclic subspace generated by g) for the joining λ has a
spectral measure which is absolutely continuous both with respect to ν1 and ν2 and must
therefore be 0. This says that

∫
fg dλ = 0, and λ is the product measure. #

PROPOSITION 4.4. Distal transformations are disjoint from weakly mixing transforma-
tions.

More generally, joinings allow to give a characterization of the maximal distal factor
defined in 3.4.3–6.
Call a transformation weakly mixing relative to a factor if its relatively independent

joining with itself above the given factor is ergodic.

PROPOSITION 4.5. The maximal distal factor is the smallest factor algebra relative to
which the transformation is weakly mixing.

Since transformations with positive entropy have Bernoulli factors we see that

PROPOSITION 4.6. Any two transformations with positive entropy are not disjoint.

PROPOSITION 4.7. K-automorphisms are disjoint from 0-entropy transformations.

Here is a nice application of this last fact which goes back to the original paper of
Furstenberg [59]. It is sometimes called the possibility of perfect filtering.

THEOREM 4.8. Assume that are given two independent stationary processes (Xn) and
(Yn) such that (Xn) generates a K-automorphism and such that (Yn) generates a zero
entropy transformation. Assume furthermore that X0 and Y0 are both in L2. Then (Xn) is
measurable with respect to the (Xn + Yn) process. That is to say the (Xn) process can be
recovered from the system perturbed by a random noise (Zn) = (Xn + Yn).

PROOF. Consider the relatively independent joining of (Xn,Zn) with itself above (Zn).
This is a triple (Xn,Zn,X

′
n) such that (X′

n,Zn) is a copy of (Xn,Zn) and (Xn) and
(X′

n) are relatively independent over (Zn). (In the previous constructions, we identify a
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process to the measure preserving transformation to which it gives rise.) (Y ′
n) = (Zn −X′

n)

is obviously isomorphic to (Yn) and therefore K . (X′
n + Y ′

n) = (Xn + Yn). We compute
E(Xn − X′

n)
2 = E(Xn − X′

n)(Y
′
n − Yn). As (Xn) and (Yn) are independent (as well as

(X′
n) and (Yn) as a consequence of the disjointness of 0-entropy transformations with K-

automorphisms), we get that the preceding expectation is 0 and therefore thatXn = X′
n a.e.

which is saying that (Xn) is measurable with respect to the (Zn) process. #

Note that this can be considered an extension of the same statement obtained under
the spectral hypothesis that the spectral measures of the two processes (Xn) and (Yn) are
mutually singular.

4.3. Self-joinings

4.3.1. Basic properties. Every transformation is isomorphic to itself which is reflected
by the presence of the trivial diagonal joining: the measure ∆ on X × X defined by

∆(A × B) = m(A ∩ B)

is a self-joining. Studying the collection of all joinings of a transformation with itself and
the structure of such joinings provides deep insights into the orbit structure of the system.
In particular presence of few joinings indicates a certain rigidity of the orbit structure
while abundance of joinings indicates its richness and “plasticity”. Thus, the family of
self-joinings ∆n, n ! 1, defined by ∆n = (Id×T n)∗∆ is quite interesting.
(1) T is mixing if and only if ∆n → m × m. Self-joinings of higher order are closely

related to mixing of higher order.
(2) T is rigid if there exists a sequence ni such that ∆ni → Id.
(3) If S is an automorphism which commutes with T , then there is a joining ∆S =

(Id×S)∗∆. As a consequence of Section 4.1.2(3) it is equivalent for a self-joining
λ to be of this form, or to satisfy V = H(λ).

Something analogous to Proposition 4.4 for weakly mixing but not mixing transforma-
tions follows from a recent work of F. Parreau (unpublished) who proved that if a trans-
formation T is weakly mixing and not mixing, it possesses a non-trivial factor which is
disjoint from all mixing transformations. A starting point for the construction of this factor
is the consideration of a non-trivial limit for ∆ni .
It can be useful to consider joinings from a more functional analytic viewpoint [143].

Assume that we are given a linear operator φ :L2(X,A,m) → L2(Y,B,µ) satisfying the
following properties: UT φ = φUS , φ1= 1, φ∗1= 1, φ(f ) ! 0 if f ! 0.
Then the measure λ defined by λ(A × B) =

∫
B φ(1A) gives a joining.

The converse is obvious: given a joining λ take for φ the conditional expectation with
respect to H restricted to L2(V). As an application, we see that if λ is a self-joining of
(X,A,m,T ) with itself, and if T has simple spectrum then λ is S × S invariant for every
automorphism S which commutes with T . Therefore λ is a self-joining for the S-action.
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4.3.2. Joinings and group extensions. There is an important theorem, due to Veech,
which contains many of the compactness arguments which appear in ergodic theory.

THEOREM 4.9. Consider an ergodic transformation (X,A,m,T ) together with a factor
(a T invariant subalgebra) B. The following statements are equivalent:
(1) Almost all ergodic components of the relatively independent joining of (X,A,m,T )

with itself above B identify V and H.
(2) There exists a compact group G and a measurable mapping φ : (X,B) → G such

that (X,A,m,T ) is isomorphic to the skew product on (XB,B,m) × (G,G,µG)

(µG the Haar measure on G) given by T (x, g) = (T x,φ(x)g) by an isomorphism
which is the identity restricted to B. (This is to compare with isometric extensions
which have been defined in 3.4.9.)

4.3.3. Minimal self-joinings. D. Rudolph [140] introduced, for a transformation, the no-
tion of minimal self-joinings, which basically says that a transformation has no other join-
ings with itself than the obvious ones, and proved existence of mixing transformations with
that property.

DEFINITION 4.10. A weakly mixing transformation (X,A,m,T ) has minimal self-
joinings (MSJ) if the following is true: for all n ! 2 any ergodic joining λ of n copies of
(X,A,m,T ) (λ is a probability measure on

∏n
1(Xi,Ai ) invariant under

∏n
i=1 Ti , which

satisfies

λ

(
Ai ×

∏

j 1=i

Xj

)
= mi(Ai)

for all 1 " i " n and all Ai ∈ Ai . (Xi,Ai ,mi, Ti), 1 " i " n, is a copy of (X,A,m,T ))
satisfies the following: the set [1, n] can be decomposed into a disjoint union of subsets Ek ,
1" k " r , such that:
(1) The algebras

Bk =
⊗

i∈Ek

Ai ×
∏

j∈Ec
k

Xj , 1" k " r,

are λ-independent.
(2) For every 1" k " r there exists integers

ni1, ni2, . . . , nis−1 (s = |Ek|)
such that λ restricted to Bk is exactly

(
Id×T ni1 × T ni2 × · · · × T nis−1

)
∗∆.

∆ is the diagonal measure.

Since factors and commuting transformations other than powers produce joinings of
types other than those described in the definition of MSJ as an immediate corollary of the
definition we obtain
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PROPOSITION 4.11. Any MSJ transformation has no factors and its centralizer consists
only of its powers.

Weak mixing is not a restriction here since a pure point spectrum transformation has
many self-joinings coming from the centralizer and presence of a non-trivial Kronecker
factor provides for the independent joining over it. In fact one can show more.

PROPOSITION 4.12. Any MSJ transformation is mildly mixing.

PROOF. If T is MSJ and has a rigid factor the factor must be the whole T . But then by
Proposition 2.14 T has an uncountable centralizer. #

We will see later that non-mixing MSJ transformations exist (Theorems 5.12 and 5.13).

4.3.4. Minimal self-joinings for flows and simple transformations. A transformation
from a flow cannot have minimal self-joinings since it commutes not only with its powers
but also with other transformations from the flow. This is taken into account in the defini-
tion of minimal self-joinings for flows. More generally, it turned out to be useful to have a
notion which is somewhat weaker than minimal self-joining and which roughly speaking
allows for joinings coming from non-trivial commuting transformations. This was done by
Veech [152]. The class of simple transformations which he defined includes in particular
transformations from flows with minimal self-joinings as well as certain rigid transforma-
tions.

DEFINITION 4.13. A weakly mixing transformation is simple if the following property is
true:
For all n ! 2 any ergodic joining λ of n copies of (X,A,m,T ) satisfies the following:

the set [1, n] can be decomposed into a disjoint union of subsets Ek , 1" k " r , such that:
(1) The algebras

Bk =
⊗

i∈Ek

Ai ×
∏

j∈Ec
k

Xj , 1" k " r,

are λ-independent.
(2) For every 1 " k " r the |Ek| algebras A〉 × ∏

j 1=i , i ∈ Ek , are λ-identical (which
is the same as saying that there exists |Ek| automorphisms commuting with T , Sj

such that λ restricted to Bk is exactly (
∏

j∈Ek
Sj )∗∆).

We note that we could have labeled these two definitions according to the number of
copies which were used. But in fact a theorem of Glasner, Host and Rudolph [63] asserts
that as soon as the definition is satisfied for a joining of three copies, it is satisfied for any
number of copies. It is not known whether the definition for two copies only would suffice
to imply that it is satisfied for three copies (and therefore for any number of copies).
It follows from Theorem 4.9 that if T is simple, it is a compact group extension of any

of its non-trivial factors.
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By Section 4.1(2) two ergodic transformations with isomorphic common factors are
never disjoint. In general the converse is not true. However the following holds [34]:

THEOREM 4.14. Two simple transformations with no isomorphic common factors are dis-
joint.

4.3.5. Mixing properties and joinings. We saw that ∆n → m × m is equivalent to mix-
ing. The study of self-joinings of higher order is closely related to higher order mixing
properties. The next definition is due to del Junco and Rudolph [34].

DEFINITION 4.15. An ergodic transformation (X,A,m,T ) is said to be pairwise inde-
pendently determined if the following is true: for every integer k a joining λ of k copies
of (X,A,m,T ) which is such that any two of the k factors of the product of the k copies
are pairwise independent (λ) must be the product joining (which is the one for which the
k factors are globally independent).

One immediate fact is the following: if a transformation is mixing and pairwise inde-
pendently determined, it is mixing of all orders. B. Host [72] has proved the following
important theorem:

THEOREM 4.16. An ergodic transformation with singular spectral measure is pairwise
independently determined.

COROLLARY 4.17. A mixing transformation with singular spectral measure is mixing of
all orders.

The last corollary is one of the few deep structural results in ergodic theory. It sheds
light on a long-standing unsolved problem (Does mixing apply mixing of all orders?) by
giving an affirmative answer in one of the “most suspicious” cases. See also Theorems 5.18
and 5.19.
Let us remark that a simple transformation is one which is 2-simple (that is every ergodic

joining of two copies of the transformation is either product measure or identifies V andH)
and pairwise independently determined. In case of an R action, V. Ryzhikov [143] has
proved that it is always true that 2-simplicity implies pairwise independently determined
(and therefore simplicity).
There are no examples known of transformations which are weakly mixing, have 0 en-

tropy, and which are not pairwise independently determined.

5. Combinatorial constructions and applications

5.1. From Rokhlin lemma to approximation

5.1.1. Genericity in the weak and uniform topologies. Let us recall definitions of the two
principal topologies in the group of all measure preserving transformations of a Lebesgue
space (X,µ) [68].
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The uniform topology first mentioned in Section 3.2.3 is quite strong: it is defined by
the metric

du(T ,S) = µ{x: T x 1= Sx} (5.1)

invariant by both left and right multiplications.
Notice however that it is weaker than the topology induced from the uniform operator

topology on the Koopman operators which is simply discrete.
The weak topology which appeared in Section 3.4.3 is metrizable but no canonical two-

side invariant metric similar to (5.1) is available to define it. One way to define a metric is
to pick a countable dense collection of measurable sets A1, . . . and define the distance as

dw(T ,S) =
∞∑

n=1
µ(T An∆SAn). (5.2)

This topology coincides with the topology induced from the strong operator topology on
Koopman operators. Weak topology is weaker than uniform and aperiodic transformations
are dense in weak topology. Hence the density of conjugates of any aperiodic transforma-
tion in all aperiodic transformations in uniform topology (Proposition 3.6) implies

PROPOSITION 5.1. Conjugates of any aperiodic transformation are dense in the group of
all measure preserving transformations in weak topology.

Here is an immediate corollary which due to the Baire Category Theorem plays a great
role in proving existence and abundance of measure preserving transformations with many
interesting properties including spectral ones.

COROLLARY 5.2. Any conjugacy invariant Gδ in weak topology set which does not con-
tain transformations with sets of periodic points of positive measure is dense and hence
residual.

This fact is widely used in existence proofs.
Another related method is to establish a property via checking its approximate versions

which can be shown to be satisfied on open dense sets. This works with properties which
can be expressed by the behavior along an unspecified subsequence of iterates (e.g., er-
godicity, rigidity, weak mixing) but not along the whole sequence (mixing, Lebesgue spec-
trum).

5.1.2. Towers and cityscapes

DEFINITION 5.3. An n-tower in a Lebesgue space (X,µ) is a collection of disjoint subsets
F1, . . . ,Fn of equal measure together with measure preserving transformations Ti :Fi →
Fi+1, i = 1, . . . , n − 1.
The sets Fi are called the levels of the tower; in particular, the set F1 is called the base

of the tower and the set Fn the roof of the tower.
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The union of all levels is called the support of the tower.
The number n is sometimes called the height of the tower. The quantity nµ(F1), i.e. the

measure of tower’s support, is called the measure or the size of the tower.

We will say that the tower T agrees with a measure preserving transformation T if
T = Ti on the ith level of the tower.
The Rokhlin Theorem 3.4 says that for every aperiodic measure preserving transfor-

mation T , there exists arbitrarily high (or long) towers of measure arbitrary close to one
which agrees with T . If the measure of a Rokhlin tower is greater than n

n+1 then the image
of its roof must overlap with the base. And if the size is very close to one then most of
the roof is mapped into the base. However the Rokhlin Theorem says nothing about how
most of the roof is mapped into the base. Thus an approximation of a measure preserving
transformation by a single tower does not say much about the asymptotic properties of the
transformation apart from the crudest one, the aperiodicity.

DEFINITION 5.4. A cityscape is a union of disjoint towers, in general, of varying heights.
The measure of a cityscape is defined as the sum of measures of towers comprising the
cityscape.
A cityscape agrees with a measure preserving transformation T if every tower compris-

ing it agrees with T .

5.1.3. Uniform approximation. In order to make certain conclusions from approximation
of a measure preserving transformation by towers, or more generally, cityscapes the latter
should in some sense be representative of the σ -algebra of all measurable sets. This of
course makes sense only if one considers not a single approximation but a sequence of
such approximations. A useful model to visualize the requirement of being representative
is to think of X as a metric space and of the levels of the towers (or of towers comprising
the cityscape) as sets of small diameter. In this situation every fixed measurable set can
be approximated up to a set of small measure by a union of levels and combinatorics of
transformations in towers approximates the dynamics of the map at sufficiently long time
ranges.
This model is suggestive but restrictive in two ways: first, the appropriate topological

structure is not always available, and second, even if it is, the levels need not really be sets
of small diameter: only after throwing away a set of small measure the intersections of
the levels with the remainder would have this property. Anyway, there is a purely measure
theoretic way to formulate the property we have in mind as well as its variations.
Every measurable partition ξ of the space X generates the σ -algebra B(ξ) of sets mea-

surable with respect to the partition. For every set A ∈ B(ξ) one can find another set A′

which is the union of elements of ξ such that the symmetric difference of A and A′ is a
null-set.
To each cityscape C we associate partition ξ(C) on the space whose elements are level

of towers comprising the cityscape and the complement to the union of all such levels.
Recall that the sequence of measurable partitions ηn → ε as n → ∞, if for every mea-

surable set A ⊂ X there exists a sequence of sets
An ∈ B(ηn) such that µ(A∆An) → 0 as n → ∞.
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This notion can be reformulated as follows. We will say that partition ξ δ-refines parti-
tion η if for every A ∈ B(η) there exists A′ ∈ B(ξ) such that µ(A∆A′) < δ. Then ξn → ε
if for any finite partition η and every δ > 0 there exists N = N(η, δ) such that for n ! N ,
ξn ε-refines η.

DEFINITION 5.5. A sequence Cn of cityscapes is called exhaustive if ξ(Cn) → ε as
n → ∞.

DEFINITION 5.6. An exhaustive sequence of cityscapes which agrees with a measure pre-
serving transformation T is called a uniform approximation of T .

It follows from the Rokhlin Theorem 3.4 that every measure preserving transformation
allows a uniform approximation. To see that one needs to take a Rokhlin tower and split
its base in such a way that the partition into levels of resulting towers would be a refine-
ment of a given partition. However if one restricts the type of cityscapes (e.g., consider
cityscapes consisting of a single tower or a fixed number of towers) existence of a uniform
approximation becomes a restrictive property and implies interesting properties of T , see
Section 5.2.2.
Uniform approximation and its variations are used to produce measure preserving trans-

formations with interesting properties. We will consider three ways to produce such ap-
proximations: cutting and stacking, coding with respect to a given generating partition,
and periodic approximation.

5.2. Cutting and stacking and applications

5.2.1. The method of cutting and stacking. (See also [138].) The cutting and stacking
method is a particular way to produce inductively an exhaustive sequence of cityscapes
which form a uniform approximation of a measure preserving transformation.
At nth step a cityscape Cn is defined. The transformation is thus defined everywhere

except for the roofs of the towers from Cn and a certain set An which is the complement
to the union of supports of the towers in the cityscape. Then each tower of Cn is divided
into towers and new levels are added from An to some of the towers. Then the roofs of
most of new towers are mapped into bases of other towers. This produces the cityscape
Cn+1 and the set An+1 ⊂ An. Specifically, those parts of the bases of old towers which do
not belong to the images of the roofs of extended old towers serve as bases of new towers.
Each new tower is defined by an itinerary, namely a sequence of old towers which are
visited in succession. This is why the construction is called cutting and stacking: bases of
old towers are cut according to the itineraries and this new thin towers are stacked on top
of each other.
The list of important examples constructed with the cutting and stacking method is

quite large. Let us mention the “Chacon transformation” described below in Section 5.2.3,
the rank one mixing transformations (Section 5.2.4), the first examples of Ornstein of
K-automorphisms which are not Bernoulli later developed in [119] (as well as his coun-
terexamples to the Pinsker conjecture), the Feldman examples of non-standard transforma-
tions with zero entropy [51]. To illustrate the usefulness of the method for other groups let
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us mention [83] where the cutting and stacking method is used to construct examples of
Zk and Rk actions with k ! 2 where individual elements have zero entropy which cannot
be realized by diffeomorphisms of compact manifolds with respect to any Borel measure.
We will mention other specific constructions in due course.

5.2.2. Approximations with towers or large size; rank

DEFINITION 5.7 [117]. A measure preserving transformation T has rank one if it admits
uniform approximation by single towers.
Equivalently, T is rank one if for every finite partition η and every δ > 0 there is a tower

T which agrees with T and such that the partition ξ(T ) into the levels of the tower and the
complement to its support δ-refines the partition η.

Importance of the rank one property for the spectral theory of measure preserving trans-
formations is based on the following fact.

PROPOSITION 5.8. Any rank one transformation has simple spectrum and is hence er-
godic.

PROOF. Consider a tower T of height n approximating T with base F . The images of
the characteristic function ξF under Ui

T , i = 0,1, . . . , n − 1, are characteristic functions of
the disjoint levels of the tower. Thus there is a cyclic subspace which contains all charac-
teristic functions of the levels of the tower and their linear combinations. Consider these
cyclic subspaces for an exhaustive sequence of towers. From the approximation property
it follows that for any given f ∈ L2(X,µ) projections to these cyclic subspaces converge
to f . Hence by Theorem 1.21, UT has simple spectrum. #

The spectral multiplicity estimates based on uniform approximation can be obtained
under more general conditions than rank one.

DEFINITION 5.9. An ergodic transformation T is locally rank one if there exists a > 0
such that for every finite partition

η = (p0,p1, . . . , pl)

and for every ε > 0, there exists a tower T of size ! a and a partition

η̄ = (p̄0, p̄1, . . . , p̄l)

of T whose elements are unions of levels such that

l∑

s=0
m(p̄s \ ps) < ε.

We call any number a satisfying the above definition an order of T .
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REMARK. Property of local rank one of order a is equivalent to existence of a uniform
approximation by cityscapes where one tower has measure at least a.

If the transformation T allows uniform approximation by cityscapes with k towers, the
transformation is said to have rank no greater than k. Since in each cityscape at least one
tower has measure at least 1/k any transformation of rank no greater than k is locally rank
one of order at least 1/k. The following theorem generalizes Proposition 5.8.

THEOREM 5.10. If an ergodic transformation is locally rank one of order a, its spectral
multiplicity is bounded by [1/a].

SKETCH OF PROOF. As before in the proof of Proposition 5.8 this easily follows form the
definition and Theorem 1.21. Given k = [1/a] + 1 orthonormal functions f1, f2, . . . , fk ,
we first approximate them in L2 by finite valued functions. We call η the partition which
makes all these finite valued functions measurable. We consider a tower T with base F

which locally approximates this partition (as in the definition) and which is sufficiently
long to have the ergodic theorem giving that the frequency of appearances of each set in η

in the tower is close to its measure. If we take for H the cyclic space generated by ξF , we
see that the conditions of Theorem 1.21 are satisfied. #

Simplicity of the spectrum does not force anything on the rank of the transformation,
see [52,36,108] for examples of transformations with simple spectrum which are not lo-
cally rank one. The relations between rank and spectral multiplicity have been thoroughly
studied by J. Kwiatkowski and Y. Lacroix [99].
Another interesting property of local rank one transformations is related to Kakutani

equivalence theory.

PROPOSITION 5.11 [80]. Any locally rank one transformation is standard (zero entropy
loosely Bernoulli, sometimes also called loosely Kronecker), i.e. it is induced by any
odometer and any irrational circle rotation and induces any of those transformations.

Ferenczi [52] and De la Rue [36] (see Theorem 6.23) constructed transformations with
simple spectrum which are not standard and therefore also not locally rank one.

5.2.3. Chacon transformation [26]. The Chacon Transformation which is a particular
rank one transformation is one of the jewels of ergodic theory. As we shall see, it can be
used as a source of examples with interesting, often exotic, properties. Its particular interest
is that while it exhibits very moderate and rather regular pattern of orbit growth properties
it does not fit into either of the three main paradigms of smooth ergodic theory: elliptic
(Section 2.2.4), hyperbolic and parabolic (Section 2.1.3). Smooth realization of this map is
unknown and seems to be beyond the reach of available methods.
The transformation is defined inductively on the unit interval equipped with Lebesgue

measure I . At stage n, there are h(n) intervals of equal length I1, I2, . . . , Ih(n) and T maps
Ik onto Ik+1, 1" k " h(n)− 1, by translations. T is not defined on Ih(n). To go from stage
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n to stage n + 1, we divide the interval I1 into three intervals of equal length, I 11 , I
2
1 , I

3
1 ,

and therefore divide the tower

τn =
h(n)−1⋃

i=0
T iI1

into three columns

τ
j
n =

h(n)−1⋃

i=0
T iI

j
1 ,

1" j " 3. We now pick an interval Jn disjoint from τn with length equal to the length of
I 11 and define τn+1 mapping by translations T h(n)−1I 11 onto I 21 then T h(n)−1I 21 onto Jn and
finally Jn onto I 31 (as all these intervals have the same width). The interval I

1
1 is thus the

basis of a new tower τn+1 of height 3h(n) + 1. It is easy to adjust the length of the interval
at stage 0 (h(0) = 1) in such a way that the limit transformation T will be defined on I .
This transformation is rank one since the sequence of towers defines a refining sequence
of partitions into intervals of length going to 0 which will generate the Lebesgue algebra.

THEOREM 5.12. The Chacon transformation is weakly mixing but not mixing.

PROOF. Absence of mixing is a consequence of the fact that any set A which is the union
of intervals in τn satisfies

m
(
A ∩ T h(n)A

)
! 1
3
m(A).

Weak mixing comes from the fact that if f is an eigenfunction corresponding to the eigen-
value λ, λ 1= 1, then given ε > 0, there will be an n and a level J in τn on which f will not
vary by more than ε on a fraction 9/10 of J . Call a the value to which f is close on J .
But T h(n)f will be close to λna on a third of J , and T h(n)+1f will be close to λn+1a on
another third of J , forcing

∣∣λna − λn+1a
∣∣ < ε,

|λ − 1| < ε. As ε was arbitrary, we obtain a contradiction. #

The following theorem is due to del Junco, Rahe and Swanson [33].

THEOREM 5.13. The Chacon transformation has minimal self-joinings.

Note that on immediate consequence of the definition implies that a transformation with
MSJ commutes only which its powers and has no non-trivial factors. Thus the Chacon
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transformation is not rigid since the centralizer of a rigid transformation contains its orbit
closure which is perfect and hence uncountable and has no rigid factors. Hence

COROLLARY 5.14. The Chacon transformation is mildly mixing but not mixing.

The Chacon transformation can be used to give an answer to the convolution problem.
In fact M. Lemańczyk first proved that if σ is the spectral measure of the Chacon transfor-
mation, then σ ∗σ ⊥ σ . This was extended by A. Prikhod’ko and V. Ryzhikov [127] to the
following.

THEOREM 5.15. Let σ be the spectral measure of the Chacon transformation. Then for
every n 1= m, σ ∗n ⊥ σ ∗m.

For other methods of proving singularity of convolutions see Propositions 5.43 and 5.44
and Theorem 5.49.
A transformation with minimal self-joinings can be used as a “building block” for a

great variety of examples. D. Rudolph in [140] developed a useful unifying concept of
“counterexample machine”. Very roughly, the counterexample machine can be thought of
as a functor from the category of permutations of the set of integers N to measure preserv-
ing transformations. The arrows in the first category are injections N → N which are such
that together with the corresponding permutations, they make the diagram commutative.
In this last category, for example, it is easy to see that weak isomorphism does not imply
isomorphism.
An interesting open question is related with Kakutani equivalence. The Chacon trans-

formation itself is standard by Proposition 5.11, but it is not known whether its Cartesian
square is standard.

5.2.4. Rank one mixing transformations. There is a method, due to D. Ornstein [117], to
construct “random” rank one transformations which almost surely show very interesting
properties.
We are given two sequences of integers p(n) and t (n) and a family of integers

an,i , 1" i " p(n), an,i " t (n).

The construction is as in the Chacon example, with a tower τn which is made of h(n)

intervals I1, I2, . . . , Ih(n) of equal length such that

T Ik = Ik+1, 1" k " h(n) − 1,

and the map acts by translations. To go to τn+1, I1 is divided this time in p(n) intervals
of equal length, producing p(n) columns τ i

n,1 " i " p(n), and τn+1 is constructed by
stacking τ i+1

n onto τ i
n, 1 " i " p(n) − 1, after the insertion, between the last level of τ i

n

and the basis of τ i+1
n of an,i intervals (which all have the same length); tn is chosen so that

tn " hn−1 and tn → ∞. These added intervals are called spacers. The randomness is on
the an,i which are chosen independently, such that for given n, all the an,i take values on
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[1, tn]which uniform probability 1/t (n). In this probability space, a pointω is the sequence
of an,i , 1" i " p(n), n ! 1, and to every such ω corresponds a rank one transformation Tω.
D. Ornstein has proved:

THEOREM 5.16. In the previous model, almost surely Tω is mixing.

We have seen (Proposition 5.8) that rank one transformations have simple spectrum, the
fact that they could be mixing made them interesting candidates for examples with simple
Lebesgue spectrum. However J. Bourgain [24] has proved

THEOREM 5.17. In the previous model, almost surely the spectral measure of Tω is sin-
gular with respect to Lebesgue measure.

In fact it looks quite plausible that every rank one transformation has purely singular
spectral measure. This is justified by the previous theoremwhich implies by Host’s theorem
that these transformations are almost surely mixing of all orders, and by the following result
of S. Kalikow [73].

THEOREM 5.18. A mixing rank one transformation is mixing of all orders.

V. Ryzhikov [142] has extended the previous theorem to the following:

THEOREM 5.19. A mixing finite rank transformation is mixing of all orders.

It is not known whether the same holds for mixing locally rank one transformations.
As as consequence of the theorem of Kalikow, J. King proved

THEOREM 5.20. A mixing rank one transformation has minimal self-joinings.

This implies in particular that a mixing rank one transformation commutes only with its
powers (this was proved in the original paper of Ornstein) and has no factors.
For a long time existence of mixing rank one transformations was only known through

the construction of Ornstein. Much later T. Adams [14] gave an explicit construction of
mixing rank one transformations (the staircase Smorodinsky’s rank one where the spacers
are added in such a way that they follow the shape of a staircase). And recently B. Fayad
has constructed C1 flows which are mixing and rank one (as flows) [45].

5.2.5. Riesz products and spectra of rank one transformations. Riesz products appear
naturally as spectral measures in several natural examples in ergodic theory. For detailed
definitions and extensive discussion of the subject see [114, Chapter 16]. Riesz products
in the context of ergodic theory first appeared in the paper by Ledrappier [102], where a
certain finite extension of a system with pure point spectrum is shown to have a component
in its spectral measure which is a Riesz product. It is important and interesting because
there exist in many cases explicit criteria which can determine whether the corresponding
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measures are singular or absolutely continuous [125]. Riesz products occur also explicitly
as components of the spectral measure of many substitutions [128].
A revival of the use of Riesz product techniques arose from already mentioned result of

Bourgain (Theorem 5.17) where he first gives an explicit formula for the spectral measure
of the general rank one transformation. Such measures can be viewed as generalized Riesz
products. In his proof, Bourgain produces, using the fact that for any ergodic transformation
(X,A,m,T ), for any function f in L2, almost surely the sequence of measures

1
N

∣∣∣∣∣

k=N∑

k=1
f (T kx)e2iπkθ

∣∣∣∣∣

2

dθ

converges weakly to νf , the spectral measure νT of the general rank one transformation as
a generalized Riesz product

n=∞∏

n=1
|Pn|2.

This can be seen exactly in the same way as in the proof of Theorem 1.8. By the weak
convergence we mean that the measures

∏n=N
n=1 |Pn|2 dθ converge weakly to the spectral

measure νT . The polynomials Pn(θ) are equal to

(
p(n)

)−1/2
p(n)−1∑

k=0
e
2π i(kh(n)+∑j=k

j=1 a(j,n)θ)
.

This is obtained by applying the previous formula to the characteristic functions of the base
of the tower τ1. Then Bourgain shows that it is sufficient to prove singularity for a product
of a subsequence of the previous polynomials which are dissociated and to which classical
Riesz product techniques can be applied. Note that the mixing property can not be verified
by the use of this formula.
The same ideas are present in the paper of Klemes [89] where he shows that the spectral

measure of the Adams example [14] is singular. It is also with a proof in the same spirit that
El Abdalaoui [40] has shown that if we endow the Cartesian product of the parameter space
of the Ornstein example with the product measure, for almost every pair ω,ω′, Tω and Tω′

have mutually singular spectral measures (and are therefore disjoint by Proposition 4.3).

5.2.6. Cutting and stacking and orbit growth. In Sections 5.2.3 and 5.2.4 we described
constructions of rank one transformations where interesting behavior is achieved by time
delays in the return from a part of the roof of the single tower to its base. For the Chacon
transformation this delay was by time one on one third of the tower and for rank one mixing
transformations the delays were uniformly distributed in an appropriate sense. Thus non-
trivial combinatorics was achieved by the distribution of the delay times.
These examples represent instances of intermediate orbit growth; not slow elliptic and

not exponential hyperbolic or uniform polynomial parabolic like horocycle flows (Sec-
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tion 6.2.2). They probably are best described are being outside of three principal para-
digms. This fits well with the fact that no smooth realization for Chacon transformation
is known and for rank one mixing map realization has only been achieved in C1 which is
considered somewhat pathological in the smooth setting.
We should point out that interesting behavior (but not mixing or even mild mixing)

may be achieved also in the context of fast cyclic approximation (elliptic behavior) (see
Section 5.4.2) which can be interpreted as uniform approximation with single towers and
direct return of most of the roof to the base. In this case there are spacers too but their effect
becomes noticeable only after running the cycle for many times.

5.2.7. Constructions with many towers. At the other end of the spectrum of possibilities
for cutting and stacking lie situations where the number of towers grows and the roofs of
towers at an inductive step are mapped to the base in a complicated way. All positive en-
tropy examples constructed by cutting and stacking necessarily have such structure as well
as examples with subexponential but still substantial orbit growth such as transformations
from the actions in [83]. The most straightforward way to carry out such constructions is
to match the roofs to the bases more or less independently. This method allows to produce
any desirable speed and regularity of orbit growth by controlling the number of towers in
the approximating cityscapes.
In such constructions if spacers are not used at all (in other words, if at every step

the cityscape Cn fills the whole space) the resulting transformation has an odometer (Ex-
ample 2.16(3)) as a factor. In order to achieve weak mixing, not speaking of mixing or
K-property, spacers are needed in addition to the distribution of roofs. Non-isomorphic
K-automorphisms with the same entropy from [119] as well as non-loosely Bernoulli K-
automorphisms from [51] are examples produced by cutting and stacking constructions of
that type. The original Feldman example has been extended [118] to provide uncountably
many zero entropy transformations which are pairwise not equivalent.
There are various types of cutting and stacking constructions: the ones we mentioned are

based on the idea that a fixed pattern is repeated at every stage. Some others alternate two
very different patterns. A typical one in that class is the Rothstein’s construction of non-
loosely Bernoulli transformation [138]: there is an alternation of stages where independent
cutting and stacking is performed thereby creating so many names that most of them are
far apart in the f̄ distance (based on the Kakutani distance between string of symbols) and
is next followed by a stage where names are just repeated twice, which has an effect of
dropping the entropy without altering too much the separation of names previously created
in f̄ metric.
Very beautiful cutting and stacking constructions have been found by C. Hoffman [71]:

he has developed a version of Rudoplh’s counterexample machine (see Section 5.2.3) for
K-automorphisms and in particular, produced two weakly isomorphic but not isomorphic
K-automorphisms with finite entropy.

5.3. Coding

The coding constructions are very close to symbolic dynamics, see [8, Section 2.6] for an
overview of that subject. For a comprehensive introduction and many interesting examples
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see [109]. In some of those constructions invariant measure is given as is the case for in-
terval exchange transformations (Section 5.3.1) in others it is not fixed from the beginning
but is constructed as the asymptotic distribution on the chosen names as for substitution
dynamical systems discussed in Section 5.3.2.
To put the coding-based constructions into the general framework of the inductive com-

binatorial constructions we consider a space with a partition into “symbols” of an “al-
phabet” and define certain rules by which allowable words are produced. Similarly to the
cutting and stacking (uniform approximation) constructions the coding method is very gen-
eral since any ergodic finite entropy transformation allows a finite generator and hence a
symbolic representation [96]. However when we speak of combinatorial constructions of
coding type we mean certain recursive procedures which allow inductively to produce dis-
tributions of longer words from those of shorter ones.
Now we will consider several specific classes of such constructions.

5.3.1. Interval exchange transformations

Definition and parametrization. Consider n ! 2 and π an irreducible permutation of
{1, . . . , n}. A permutation π is called irreducible if π{1, . . . , d} 1= {1, . . . , d}, 1 " d < n.
Let ∆ be the simplex in Rn,

λ = (λi ), 1" i " n,λi ! 0,
i=n∑

i=1
λi = 1.

The unit interval I = [0,1) is divided into semi-open intervals Id = [∑i<d λi ,
∑

i!d λi ),
1" d " n.
The interval exchange transformation Tπ,λ acts on every Id by a translation in such a

way that the intervals are rearranged according to the permutation π . That is, on Id , Tπ,λ

is the translation by
∑

π(i)<π(d) λi − ∑
i<d λi .

Interval exchange transformations preserve Lebesgue measure. Sometimes more general
transformations which change orientation on some of the intervals are also considered.
Interval exchange transformations are briefly mentioned in [8, Sections 4.3g and 8.4]

and more thoroughly discussed in [11, Section 6]. For an elementary self-contained intro-
duction to the subject see [79, Section 14.5]. The area has developed into a major subject
of research with some of the deepest and most beautiful results and constructions in the
whole of ergodic theory. Some of the recent work in the area is described in [5].
The parameter space for the set of exchanges of n intervals is the simplex of the lengths

of the intervals multiplied by the finite set of irreducible permutations. Notice that dynam-
ics obviously depend on the choice of parameters and is fairly simple in some cases. For
example, if all λ’s are rational all points are periodic albeit with different periods. This
is of course similar to the case of translations on the torus. Another similarity with toral
translations is prevalence of minimality.

THEOREM 5.21 ([79, Corollary 14.5.12], originally appeared in [85]). If one excludes
from the simplex of lengths intersections with countably many hyperplanes then every orbit
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of the interval exchange transformation corresponding to the remaining set of parameters
is dense.

The proof is based on the observation that unless there is a “saddle connection”, i.e. an
orbit segment beginning and ending in discontinuity points then all orbits are dense. For
an irreducible interval exchange any type of saddle connection generates a rational relation
between the lengths of the intervals.
However, ergodic properties of interval exchange transformations with respect to

Lebesgue measure exhibit more complicated dependence of the parameters than is the
case with toral translations. The same apply to the question of unique ergodicity.

Finiteness properties. The following three theorems summarize the basic distinctive
properties of interval exchange transformations which do not depend on the choice of para-
meters and which can be described as something like “finiteness of dynamical complexity”.
The key observation here is that the transformation induced by an exchange on n intervals
on any interval, however small, is again an exchange of at most n + 1 intervals.

THEOREM 5.22 [76]. An aperiodic interval exchange transformation on k intervals is of
finite rank at most k. Furthermore, it is rank k by intervals: that is all the levels of the
towers which appear in the definition of finite rank are intervals. Furthermore these towers
fill the whole space.

Unlike the general finite rank (or even rank one) property this kind of uniform approxi-
mation implies absence of mixing.

THEOREM 5.23 ([11, Theorem 6.10], originally proved in [76]). An interval exchange
transformation is never mixing.

Another consequence of Theorem 5.22 is an estimate on the number of ergodic measures
and the spectral multiplicity of any such measure.

THEOREM 5.24. An aperiodic interval exchange transformation of n intervals has at most
n − 1 ergodic Borel probability invariant measures. Spectral multiplicity of the transfor-
mation with respect to any invariant measure (ergodic or not) does not exceed n.

The estimate on the number of ergodic measures can be improved. The best estimate
which depends only on the number of intervals is n/2 for n even (this includes unique
ergodicity of irrational rotation for n = 2) and n− 1/2 for n odd. This estimate is sharp for
the reverse permutation π(i) = n − i. On the other hand, there is a sharp estimate for any
permutation which depends not only on the number of intervals but on the permutation π .
For a “generic” combinatorics, the resulting estimate is slightly above n/4. This may sound
mysterious but becomes transparent when one constructs for any interval exchange trans-
formation an oriented surface with a flow for which the original transformation serves as a
section map on a certain arc connecting two (not necessarily different) saddles. The sharp
estimate for the number of ergodic invariant measures is the genus of the surface which
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depends only on the permutation π . See [79, Theorem 14.7.6] for the inequality and [145]
for constructions of minimal examples with any number of ergodic measures between one
and the genus. Satayev’s method in [145] makes use of symmetry in a way somewhat sim-
ilar to that used in the construction of transformations with given values of multiplicity in
the spectrum which we discuss in Section 5.8.4.

Typical behavior in the parameter space: direct methods. Finiteness of the number of
ergodic invariant measures implies in particular that Lebesgue measure has finite number
of ergodic components. Hence one may ask when an interval exchange transformation is
ergodic with respect to Lebesgue measure, or, which is even more natural in the present
context when Lebesgue measure is the only invariant measure for an interval exchange
transformation. This is one of the few places in this survey when we do not have ergodic-
ity given a priori or following from a construction but discuss conditions for ergodicity
instead.
The answer is easy and explicit for n = 2 and 3 because in those cases the surface

discussed above is a torus.
In both cases the only irreducible permutations are reverse permutations. Exchange of

two intervals of lengths λ and 1− λ becomes the circle rotation Rλ once the interval [0,1)
is identified with the circle. Thus irrationality of λ is equivalent to unique ergodicity.
The situation is only slightly more complicated for the exchange of three intervals of

lengths λ1, λ2 and 1− λ1 − λ2 in reverse order. Direct inspection shows that this transfor-
mation is identified with the transformation induced by the rotation R 1−λ1

1+λ2
on any interval

of length λ2
1+λ2

. Hence the interval exchange is ergodic with respect to Lebesgue measure
if and only if it is uniquely ergodic and this happens exactly when the number 1−λ1

1+λ2
is

irrational.
For n ! 4 the picture becomes considerably more complicated. First, there is no more

dichotomy between periodicity and unique ergodicity. Necessary and sufficient conditions
for ergodicity with respect to Lebesgue measure or unique ergodicity (which are also not
equivalent anymore) are not available. However, the following fundamental result holds.

THEOREM 5.25. Almost every with respect to Lebesgue measure on the simplex of length
interval exchanges transformations is uniquely ergodic.

This theorem was originally proved independently by Veech [153] and Masur [111]
using advanced indirect methods which are discussed below. Shortly afterwards Bosher-
nitzan [22] found a direct (albeit fairly complicated) proof based on the following sufficient
criterion for unique ergodicity.
For a given interval exchange transformations let ξ be the partition into its intervals

of continuity and ξn = ∨n−1
k=0 T k

π,λξ be the iterated partition. Notice that the number of
elements in ξn grows linearly with n. Aperiodicity of the transformation is equivalent to
fact that the maximal length of elements in ξn goes to zero as n → ∞. Let mn be the
minimal length of an element in ξn. Given ε > 0 we will call positive integer n ε-regular if
mn ! ε

n .
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An interval exchange transformation satisfies property P if for any l ! 2 there exists λ(l)

such that there are infinitely many sequences of ε-regular numbers of length l, n1, . . . , nl

with ni+1 > 2ni , i = 1, . . . , l−1, and nl < λn1. Any set of natural numbers which contains
such sequences will be called essential.

THEOREM 5.26. Any interval exchange transformation which satisfies property P is
uniquely ergodic.

Now consider a family of interval exchange transformations parametrized by a space
Ω with a probability measure µ. For a given ε let u(n, ε) be the measure of the set of
parameters for which the number n is ε-regular for the corresponding interval exchange
transformation.
A family of interval exchange transformations parametrized by Ω satisfies collective

property P if for any ε > 0 one can find δ > 0 and a single essential set A(ε) such that
u(n, δ) > 1− ε for all n ∈ A(ε).

PROPOSITION 5.27. If a family satisfies collective property P then almost every element
in the family satisfies property P.

One can show that for any admissible permutation the whole simplex of interval ex-
change transformations with this permutation and with Lebesgue measure satisfies collec-
tive property P . Theorem 5.25 then follows from Proposition 5.27 and Theorem 5.26.
An earlier and more elementary example of use of direct methods for showing preva-

lence of certain properties concerns spectral properties of exchanges of three intervals.
Many interesting phenomena in ergodic theory can be realized within the class of inter-

val exchange transformations. In particular, this is connected with a possibility to realize
certain kinds of symmetry within this class. Notice in particular that any piecewise constant
finite extension of a rotation (or, more generally of an interval exchange transformation)
can be represented as an interval exchange transformation. See Section 5.8.4.

THEOREM 5.28 [81]. Almost every exchange of three intervals has simple singular con-
tinuous spectrum.

This result follows form existence of both good cyclic approximation and good approx-
imation of type (n,n + 1) (Section 5.4.2), which are constructed using properties of ap-
proximation of parameters by rationals, and Propositions 5.39 and 5.40.

Renormalization dynamics and advanced results. A powerful indirect approach to the
study of interval exchange transformations is based on renormalization type dynamics in-
troduced by Rauzy [133]. It was first developed by Veech [153] for his proof of Theo-
rem 5.25. Let us mention a couple of relevant results.
Veech [154] has proved:

THEOREM 5.29. Almost every interval exchange transformation is of rank one.
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Recently Avila and Forni [20] solved the long-standing open problem.

THEOREM 5.30. Almost every interval exchange transformation is weakly mixing.

The following related question by Veech remains open.

PROBLEM 5.31. Is it true that almost every interval exchange ofm ! 3 intervals is simple?

5.3.2. Substitution dynamical systems. Another interesting class of examples related to
symbolic dynamics comes from what is called substitutions. Literature on substitution dy-
namical systems is quite extensive, maybe a bit out of proportion of the place of the subject
within the general context of ergodic theory and symbolic dynamics. In particular, a de-
tailed albeit not fully up-to-date account of the spectral properties for this class of systems
exists in book form [128]. We restrict ourselves to the definition and a couple of interesting
examples.
We consider a finite set A = {0,1,2, . . . , n − 1}. We let A∗ = ⋃

k"1Ak be the set of all
finite words in the alphabet of A.

DEFINITION 5.32. A substitution ζ on A is a map from A to A∗. It defines a map from
A∗ to A∗ in the following way: if x = x0x1 . . . xn ∈ A∗, then

ζ(x) = ζ(x0)ζ(x1) . . . ζ(xn).

This obviously extends to a map from AN to AN .

We consider substitutions such that
(a) the length of ζ n(i) goes to infinity when n → ∞ for every i ∈ A,
(b) there exists a symbol 0 in A such that ζ(0) starts with (0),
(c) there exists an integer k such that for every two i, j ∈ A, ζ k(i) contains j .
A substitution satisfying (a), (b) and (c) is called primitive. The most famous transfor-

mation which can be described by a substitution is the Morse sequence, which is defined
on the alphabet 0,1 by

ζ(0) = 01, ζ(1) = 10.

THEOREM 5.33. Given a primitive substitution ζ any fixed point x = ζ(x), x ∈ AN (which
is easily shown to exist) has on orbit closure X on which the shift T is a uniquely ergodic
transformation (independent of the fixed point).

THEOREM 5.34. All the transformations (X,T ) as described in the previous theorem are
finite rank transformations.

Another important example is the Rudin–Shapiro sequence which is generated by the
following primitive substitution on 4 symbols:

ζ(0) = 02, ζ(1) = 32, ζ(2) = 01, ζ(3) = 31.
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The remarkable spectral property of the transformation T associated to the Rudin–
Shapiro sequence is the following, first proved by T. Kamae [74]

THEOREM 5.35. T has a Lebesgue component in its spectral measure.

Since T is of finite rank, this implies UT is a unitary operator with finite spectral multi-
plicity and a Lebesgue component in its spectrum. We note however that UT also has a dis-
crete component in its spectrum. This is one of very few known examples with Lebesgue
component of finite multiplicity in the spectrum. Other examples are discussed in Sec-
tion 5.8.5; these constructions are somewhat more flexible than Rudin–Shapiro; in partic-
ular, they can be made weakly mixing (Theorem 5.75).
Notice that no examples are known with a simple Lebesgue component in the spectrum

as well as with Lebesgue (or absolutely continuous) spectrum of finite multiplicity.

5.4. Periodic approximation

The method of periodic approximations is in a number of respects parallel and comple-
mentary to the cutting and stacking method. It is based on the ideas of fast approximation
of a measure preserving transformations in weak as opposed to uniform topology. This
allows to define approximating transformations everywhere if need arises. The method has
been introduced in [81]; see also [29]. For the most up-to-date albeit not comprehensive
presentation of the methods and some of its applications see [78]. We mostly follow the
last source in this section.

5.4.1. Periodic processes. Let (X,µ) be a Lebesgue space. A periodic tower t is an
ordered sequence of disjoint subsets t = {c1, . . . , ch} of X having equal measure which we
will usually denote m(t). The number h = h(t) will be called the height of the tower t .
Associated with a tower, there will be a cyclic measure-preserving permutation σ sending
c1 to c2, c2 to c3, etc., and cn to c1. The set c1 will be called the base of the tower.

DEFINITION 5.36. A periodic process is a collection of disjoint towers covering X, to-
gether with an equivalence relation among these towers which identifies their bases. A pe-
riodic process which consists of a single tower is called a cyclic process.

The notion of periodic tower is a counterpart of the notion of tower in the construction of
uniform approximation while the notion of periodic process corresponds that of cityscape
from Section 5.1.2.
The partition into all elements of all towers will normally be denoted by ξ , sometimes

with indices. The permutation σ sends every element of ξ into the next element of its tower
in cyclic order. Another partition naturally associated with a periodic process consists of
the unions of bases of towers in each equivalence class and their images under the iterates
of σ , where when we go beyond the height of a certain tower in the class we drop this
tower and continue until the highest tower in the equivalence class has been exhausted. We
will denote this partition by η, with appropriate indices. Obviously η " ξ .
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DEFINITION 5.37. The sequence (ξn,ηn,σn) of periodic processes is called exhaustive if
ηn → ε as n → ∞, i.e. for every measurable set A ⊂ X there exists a sequence of sets
An ∈ B(ηn) such that µ(A∆An) → 0 as n → ∞. An exhaustive sequence of periodic
processes (ξn,ηn,σn) is called consistent if for every measurable set A ⊆ X, the sequence
σnA converges to a set B , i.e. µ(σnA∆B) → 0 as n → ∞.

Since ξn ! ηn, then for an exhaustive sequence of periodic processes, ξn → ε as n → ∞.
For a consistent exhaustive sequence of periodic processes, independently of particular re-
alizations of σn as measure-preserving transformations, the sequence {σn} converges in
the weak topology. For a given transformation T and an exhaustive sequence of peri-
odic processes (ξn,ηn,σn), a sufficient condition for the weak convergence of σn → T

is d(ξn, T ,σn) = ∑
c∈ξn

µ(T c∆σnc) → 0 as n → ∞.

DEFINITION 5.38. If the last condition is satisfied we will say that the exhaustive se-
quence of periodic processes (ξn,ηn,σn) forms a periodic approximation of T . In particu-
lar, if the periodic processes are cyclic the periodic approximation is called cyclic.

5.4.2. Speed of approximation. The type of approximation is defined in [78, Defini-
tion 1.9]. It involves a somewhat technical equivalence relation between sequences of pe-
riodic processes. However there is going to be no ambiguity for natural types of approxi-
mation discussed below, such as cyclic, type (n,n + 1) and so on. Given a type T = {τn}
in that sense defined above and a sequence g(n) of positive numbers, we will say that
a measure preserving transformation T admits a periodic approximation of type {τn} with
speed g(n) if for a certain subsequence {nk} there exists an exhaustive sequence of periodic
processes (ξk,ηk,σk) of type τnk such that

d(ξk, T ,σk) < g(nk).

The speed of approximation will usually be measured against a certain characteristic para-
meter q depending on the type. There is a natural notion of a good speed of approximation,
which generally means that a typical orbit of the limit transformation reproduces the be-
havior of one of the orbits of the approximation for sufficiently many periods. Usually
the characteristic parameter q is chosen in such a way that good approximation means
approximation with any speed of the form g(q) = o(1/q). In the particular case of cyclic
approximation the only parameter for a cyclic process is the height q of its single tower,
which naturally serves as the characteristic parameter. Cyclic approximation with speed
o(1/q) is usually called good cyclic approximation. Good cyclic approximation is char-
acteristic for the elliptic paradigm in smooth ergodic theory (see Section 2.2.4). Principal
properties of transformations allowing good cyclic approximation which are thus typical
for the elliptic paradigm are summarized in the following proposition. When it is possible
we also describe weaker conditions.

PROPOSITION 5.39. If T admits a good cyclic approximation then:
(1) T is ergodic. This remains true for a cyclic approximation with speed (4− θ)/q for

any fixed θ > 0 [81,29].
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(2) T is not mixing. This remains true for the speed (2− θ)/q , θ > 0 [81,29].
(3) The maximal spectral type of T is singular [81]. This remains true for speed

(1− θ)/n for any θ > 0 [78, Section 3].
(4) T is rigid [81]. This property implies (3).
(5) T is standard; this remains true for the speed (2− θ)/q , θ > 0.
(6) T is rank one.
(7) T has simple spectrum. This follows from (6). This property remains true for speed

(1− θ)/q for any θ > 0 [81,29].

Good cyclic approximation does not allow to distinguish between transformations with
pure point, mixed or continuous spectrum. In fact, every ergodic transformation with pure
point spectrum admits good cyclic approximation [75, Section 8]. Here we give an example
of another approximation property which guarantees weak mixing.
The type of periodic approximation is generated by periodic processes equivalent to

processes consisting of two substantial towers t1, t2 whose heights differ by 1. Equivalently
the heights of the two towers are equal to n and n + 1 and for some r > 0,

m(t1) > r/n and m(t2) > r/n. (5.3)

This type of approximation is said to be of type (n,n + 1). This type of approximation is
related with the rank two property (see Section 5.2.2) and it implies rank two if the speed
is sufficiently high; however the extra property that the roof of each tower returns mostly
to the base of the same tower makes it stronger. For approximation of type (n,n + 1) the
choice of the characteristic parameter is ambiguous. There are two natural ways to define
it according to what properties of the limit transformation T we want to study. Namely,
we can either take the characteristic parameters q as the length of one of the cycles (n or
n + 1), or as the period n(n + 1) of the permutation σ . We will call the approximation of
type (n,n + 1) with speed o(1/n) good and the approximation with speed o(1/n(n + 1))
excellent. One some occasions it will be necessary to assume that the two towers involved
in the approximation are equivalent. This simply insures that the partitions generated by
the union of the bases of the towers and the iterates of this set is fine. The corresponding
approximation will be called linked approximation of type (n,n + 1).

PROPOSITION 5.40 [82, Theorem 5.1]. If a transformation T admits a good linked ap-
proximation of type (n,n + 1) or if T is ergodic and admits a good approximation of type
(n,n + 1) then T has continuous spectrum.

SKETCH OF PROOF. The proof is very similar to the proof of weak mixing for the Chacon
transformation (Theorem 5.12). Namely an eigenfunction with eigenvalue λ would have to
be almost constant on a typical level of the linked towers and hence on the base. But since
return to the base happens mostly in two successive moments n and n + 1 which implies
that both λn and λn+1 are close to one and hence in the limit λ = 1 which contradicts
ergodicity. #

The property of approximation of type (n,n + 1) (linked or not) is compatible with
cyclic approximation with arbitrary high speed. This allows to demonstrate in very simple
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concrete examples how transformations admitting good periodic approximation may have
mixed or continuous spectrum, see, for example, Theorem 5.28. Another historically im-
portant two-parametric family of examples is the two point extension of the rotation Rα

with the switch of levels on the interval [0,β]. For almost every (α,β) the spectrum in the
space of “odd” functions is simple, singular and continuous.

5.4.3. Further properties and applications. Some more elaborate versions of periodic
approximation either compatible with fast cyclic approximation or not produce interesting
properties.

PROPOSITION 5.41. If T admits an excellent linked approximation of type (n,n+ 1) then
the maximal spectral multiplicityMT ×T (cf. 4.1) of T ×T is finite and is less than or equal
to 2[1/2r(1− r)], where r is the constant from (3.6). In particular, if r > 1/2−

√
3/6 then

MT ×T " 4.

SKETCH OF PROOF. The Cartesian square of the periodic process approximating T is a
periodic process approximating T × T which, in this case, includes two substantial towers
of height n(n + 1) and each of these towers has measure at least r(1− r). For this periodic
process, the length of the maximal cycle is equal to the period of the permutation σ × σ .
Furthermore, if the original approximation is excellent then the approximation of T × T
is good when measured against this parameter. We consider the invariant subspace gener-
ated by characteristic functions of the bases of two towers of height n(n + 1) and apply
Theorem 1.21 to this subspace. #

There is a natural generalization of an approximation of type (n,n + 1) which is use-
ful for dealing with higher Cartesian powers. It involves several substantial towers whose
heights are consecutive integers. A version of this property is also crucial in the proof
of the genericity of the following useful property due to Stepin and Oseledec [148]; see
also [149].

DEFINITION 5.42. Given 0" α " 1, a measure-preserving transformation T is called α-
weak mixing if for some sequence nk → ∞ and for every set A,

lim
k→∞

µ
(
T nkA ∩ A

)
= αµ(A)2 + (1− α)µ(A).

An equivalent formulation of α-weak mixing is that the operators U
nk
T converge in the

weak operator topology to (1− α) Id + αPc where Pc is the orthogonal projection to
the one-dimensional space of constants. 0-weak mixing corresponds to rigidity, whereas
1-weak mixing corresponds to the usual notion of weak mixing. Although the terminology
may suggest it, α-weak mixing does not imply β-weak mixing for β < α. On the contrary,
α-weak mixing for any α > 0 implies 1-weak mixing.

PROPOSITION 5.43. If T is α-weak mixing for some 0 < α < 1 and ρ is the maximal
spectral type forUT |L02(X,µ), then all of the convolutions ρ(m) form = 1,2, . . . are pairwise
singular.
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Now let us show how to derive α-weak mixing from an approximation. We consider a
process with s linked towers t1, . . . , ts of consecutive heights q , q +1, q +2, . . . , q + s −1,
where q will serve as the parameter for good approximation. If m(ti) = µi , i = 1, . . . , s,
we will call such an approximation a linked approximation of type (q, q +1, . . . , q + s −1;
µ1, . . . ,µs ).

PROPOSITION 5.44. Given α, 0" α " 1, if T admits a good linked approximation of type
(

q, q + 1, . . . , q + s − 1; 1− α

q
,

α

(q + 1)(s − 1) , . . . ,
α

(q + s − 1)(s − 1)

)

for an arbitrary large s, then T is α-weak mixing.

An application of α-weak mixing, given by del Junco and Lemańczyk [32], is that it
implies a kind of “rigidity of joinings” property.

THEOREM 5.45. Let (X,A,m,T ) be α-weakly mixing with 0 < α < 1. Consider S =∏
i∈N(Xi,Ai ,mi, Ti), where (Xi,Ai ,mi, Ti) is a copy of (X,A,m,T ) for each i ∈ N . If

B is an S invariant subalgebra of
∏

i∈M Ai restricted to which S acts isomorphically to a
factor of T , then B is a factor of some Ai .

The proof uses Proposition 5.43 and the property is already sufficient to produce, with
the help of the same techniques, some of the examples which can be obtained using trans-
formations which have minimal self-joinings. The authors have given an extension of the
notion of α-weak mixing, (α1,α2, . . . ,αs)-weak mixing, such that transformations which
satisfy it can be used as building blocks to exhibit most of the examples of the “coun-
terexample machine” of D. Rudolph. It is interesting that this can be reached out of purely
spectral properties. However (α1,α2, . . . ,αs)-weak mixing transformations are only pro-
duced through constructions involving some grafting of “mixing rank one type” objects,
which hinders any simple presentation.
B. Fayad [46] developed a novel concept of periodic approximation where at each given

moment only a small part of the space returns close to itself but over the time most points
experience this return infinitely many times. The goal was to find a criterion of singular
spectrum which is compatible with mixing. Abstract description of the property in purely
measurable terms in somewhat cumbersome and in [46] a structure of metric space is
assumed. Then the property of slowly coalescent periodic approximation involves systems
of balls of decreasing size returning to themselves at exponentially growing moments of
time with exponentially small relative error in such a way that almost every point belongs
to infinitely many such balls.

PROPOSITION 5.46. Any transformation which admits slowly coalescent periodic approx-
imation has singular spectrum (not necessarily continuous).

5.4.4. Genericity of periodic approximation [78, Section 2]. Many important properties
generic for measure preserving transformations in weak topology can be deduced for the
following result (see [78, Theorem 2.1]).



712 A. Katok and J.-P. Thouvenot

THEOREM 5.47. Given a type T = {τn} and a speed g(n), the set of all measure-
preserving transformations of a Lebesgue space which admit a periodic approximation
of type T with speed g(n) is a residual set (i.e. it contains a dense Gδ set) in the weak
topology.

In particular, all properties discussed earlier in this section which follow form a certain
type of periodic approximation belong to this category. For convenience we formulate this
as a separate statement.

COROLLARY 5.48. A generic measure preserving transformation in the weak topology
is weakly mixing (hence ergodic), rigid (hence is not mildly mixing), has simple singular
spectrum such that the maximal spectral type in L20 together with all its convolutions are
mutually singular and supported by a thin set on any given scale.

We will see later that one can add to this list homogeneous spectrum of multiplicity two
for the Cartesian square, see Section 5.8.2, and other properties.

5.5. Approximation by conjugation

5.5.1. General scheme. Approximation by conjugation is a method of producing trans-
formations admitting fast periodic approximation as well as some other transformations
with interesting properties by conjugating elements (usually periodic) of actions of com-
pact groups (usually S1, but sometimes Tk and others) and taking limits in various topolo-
gies. This method is particularly suitable for smooth realizations of measure preserving
transformations with various properties. It was first introduced in [18]; this is still the basic
source on the subject. For an account of some recent development as well as an up-to-date
perspective on the topic see [47]. A purely measurable version of the method and some
of its applications are described in [78, Section 8]. Since most applications of the method
still deal with the smooth situation, we will present the set-up and results for that case. We
present a general overview of the method following [47].
Let M be a differentiable manifold with a non-trivial smooth circle action S = {St }t∈R,

St+1 = St , preserving a smooth volume. Every smooth S1 action preserves a smooth vol-
ume ν which can be obtained by taking any volume µ and averaging it with respect to
the action: ν =

∫ 1
0 (St )∗µdt . Similarly S preserves a smooth Riemannian metric on M

obtained by averaging of any smooth Riemannian metric.
Volume preserving maps with various interesting, often surprising, topological and er-

godic properties are obtained as limits of volume preserving periodic transformations

f = lim
n→∞fn, where fn = HnSαn+1H

−1
n (5.4)

with αn = pn
qn

∈ Q and

Hn = h1 ◦ · · · ◦ hn, (5.5)
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where every hn is a volume preserving diffeomorphism ofM that satisfies

hn ◦ Sαn = Sαn ◦ hn. (5.6)

In certain versions of the method the diffeomorphisms hn are chosen not preserving the
volume but distorting it in a controllable way; this, for example, is the only interesting
situation whenM is the circle (see, e.g., [79, Section 12.6]).
Usually at step n, the diffeomorphism hn is constructed first, and αn+1 is chosen after-

wards close enough to αn to guarantee convergence of the construction. For example, it is
easy to see that for the limit in (5.4) to exist in the C∞ topology it is largely sufficient to
ask that

|αn+1 − αn| "
1

2nqn‖Hn‖Cn

. (5.7)

The power and fruitfulness of the method depend on the fact that the sequence of diffeo-
morphisms fn is made to converge while the conjugates Hn diverge often “wildly” albeit
in a controlled (or prescribed) way. Dynamics of the circle actions and of their individual
elements is simple and well-understood. In particular, no element of such an action is er-
godic or topologically transitive, unless the circle action itself is transitive, i.e.M = S1. To
provide interesting asymptotic properties of the limit typically the successive conjugates
spread the orbits of the circle action S (and hence also those of its restriction to the sub-
group Cq of order q for any sufficiently large q) across the phase space M making them
almost dense, or almost uniformly distributed, or approximate another type of interesting
asymptotic behavior. Due to the high speed of convergence this remains true for sufficiently
long orbit segments of the limit diffeomorphism. To guarantee an appropriate speed of ap-
proximation extra conditions on convergence of approximations in addition to (5.7) may
be required.
There are many variations of the construction within this general scheme. In different

versions of the approximation by conjugation method one may control the asymptotic be-
havior of almost all orbits with respect to the invariant volume, or of all orbits. Somewhat
imprecisely we will call those versions ergodic and topological.
Ergodic constructions deal with measure-theoretic (ergodic) properties with respect to a

given invariant volume, such as the number of ergodic components (in particular ergodic-
ity), rigidity, weak mixing, mixing, further spectral properties. Topological constructions
deal with minimality, number of ergodic invariant measures (e.g., unique ergodicity) and
their supports, presence of particular invariant sets, and so on.
Control over behavior of the orbits of approximating periodic diffeomorphisms fn in

(5.4) on the nth step of the construction is typically provided by taking an invariant under
Sαn (and hence under S 1

qn
) collection of “kernels”, usually smooth balls, and redistributing

them in the phase space in a prescribed fashion (also S 1
qn
invariant). In ergodic construc-

tions one requires the complement to the union of the kernels to have small volume and
hence most orbits of S (and consequently of any finite subgroup Cq for a sufficiently
large q) to spend most of the time inside the kernels. In the topological versions the ker-
nels need to be chosen in such a way that every orbit of S spends most of the time inside
the kernels. This requires more care and certain attention to the geometry of orbits.
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A natural way of selecting the kernels, their intended images, and constructing a map
hn satisfying (5.6) is by taking a fundamental domain ∆ for Sαn (or, equivalently, for S 1

qn
)

choosing kernels and images inside ∆, constructing a diffeomorphism of ∆ to itself iden-
tical near its boundary which sends kernels into their intended images, and extending the
map to the images S k

qn
, k = 1, . . . , qn − 1, by commutativity. This method in particular is

used in the construction of ergodic diffeomorphisms conjugate to a rotation on manifolds
other than the circle as well as in a number of constructions where topological proper-
ties are involved. However in order to achieve other ergodic properties, for example weak
mixing, it is necessary to use more general constructions.

5.5.2. Generic constructions. The first group of results obtained by the approximation
by conjugation method deals with realization of certain ergodic properties in the category
of C∞ diffeomorphisms of a compact manifold preserving a smooth volume, i.e. a volume
given by a positive C∞ function in every local C∞ coordinate system. First recall that all
volumes with fixed total volume on a given manifold are conjugate by a C∞ diffeomor-
phism [113]. Before we start listing properties which can be produced in the framework
of the method it is useful to mention that the constructions come in two different vari-
eties which will be called generic and non-generic; justification for this terminology will
become apparent soon.
In the constructions of the first kind (generic) it is sufficient to control the behavior

of approximating and hence resulting diffeomorphisms on a series of growing but unre-
lated time scales. To carry out those construction the commutativity condition (5.6) is not
necessary. In fact the conjugating maps Hn while formally can be written as products as
in (5.5) are not constructed as such. Instead an approximate version of the desired property
is achieved by conjugation and care is taken that the sequence fn converges. The approx-
imate pictures may look quite whimsical (see, e.g., the original weak mixing construction
in [18, Section 5] and a modern version in [67]), but as long as a diffeomorphism is close
enough to conjugates of rotations appearing in such pictures the property is guaranteed.
A natural setting for those constructions is categorical. One considers the space A, the
closure of diffeomorphisms of the form gStg

−1 in C∞ topology. Here we fix a volume ν
invariant by the action S and consider all C∞ diffeomorphisms g preserving ν. Notice that
A is a complete metrizable space and hence Baire category theorem can be used.
This was first noticed in [18, Section 7] in connection with ergodic properties with re-

spect to the invariant volume and was used in [41] to control topological properties. In fact,
for a proof of genericity in A of a property exhibited by a construction of this sort no ac-
tual inductive construction is needed. One just needs to show that an approximate picture
at each scale appears for an open dense subset of conjugates of rotations. If appearance in
an approximate picture at infinitely many growing scales guarantees the property then by
the Baire category theorem the property holds for a dense Gδ subset on A.

THEOREM 5.49. For any positive function g(n) the space A contains a dense Gδ subset
of weakly mixing diffeomorphisms which admit cyclic approximation with the speed g [18].
Furthermore, transformations in that set are α-weak mixing for every α, 0" α " 1.
If the action S is fixed point free then A contains a dense Gδ subset of uniquely ergodic

diffeomorphisms [41].
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Even if the action S has fixed points or if the manifold M has a boundary the number
of invariant measures can be controlled and is generically the minimal possible. Here is a
nice low-dimensional example.
Let M be one of three manifolds: the disc D2, the annulus [0,1] × S1 or the sphere S2,

λ Lebesgue measure and S action by rotations (uniquely defined on the disc and the an-
nulus and defined by a choice of axis on the sphere). Let us call Lebesgue measure on the
manifold, the δ-measures at the fixed points of the rotations and Lebesgue measures on the
boundary components the natural measures.

THEOREM 5.50 [47, Theorem 3.3]. LetM beD2, [0,1]×S1 or S2, and St be the standard
action by rotations. Diffeomorphisms that have exactly three ergodic invariant measures,
namely the natural measures on M , form a residual set in the space A′: the closure in the
C∞ topology of the conjugates of rotations with conjugates fixing the fixed points of S and
every point of the boundary.

5.5.3. Non-generic constructions. In the constructions of the second kind approxima-
tions at different steps of the construction are linked and hence in principle the asymp-
totic behavior of the resulting diffeomorphism is controlled for all times. Constructions of
this kind appear most naturally when the resulting diffeomorphism is constructed to be
measure-theoretically conjugate to a map of a particular kind, but they also appear when
one constructs transformations with more than one ergodic component [157]. This cate-
gory also includes mixing constructions which were first introduced for time changes for
flows on higher-dimensional tori [43,44] and were developed in [47, Section 6] in the con-
text of the approximation by conjugation method. In the latter case one needs to start from
a smooth action of a torus rather than of a circle.

Non-standard realizations of Liouvillean rotations. Recall that a number α is called
Liouvillean if it allows approximation by rationals better than any negative power of de-
nominators.

THEOREM 5.51. Let α be an arbitrary Liouvillean number. Then arbitrary close to Sα in
C∞ topology there exists a diffeomorphism preserving the volume ν, ergodic and measur-
ably conjugate to the rotation Rα .

This result was proved in [18, Section 4] for a dense set of α; the proof for arbitrary
Liouvillean α is forthcoming [49].
Let us explain why this result may be considered definitive.
In the case of the disc or the annulus with the standard action by rotations the diffeomor-

phisms in question act as rotations Rα on boundary component(s).
Numbers other than Liouvillean are called Diophantine. For Diophantine rotation num-

bers such a realization on the disc or annulus (with rotation on the boundary) is impossible
since due to M. Herman’s “last geometric theorem” (to be published posthumously) any
such diffeomorphism has uncountably many invariant circles and hence cannot be ergodic.
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Other realization results. Possibilities of realizing of particular transformations or
members of particular families within the framework of the approximation by conjuga-
tion method has not been explored systematically; see [47, Section 7] for a sample of open
questions as well as a discussion of prospects and difficulties. As is the case or rotations
it looks that realization is often possible for certain subsets of transformations from finite-
or infinite-parameter families for the sets of parameters which are residual but very “thin”
in the metric sense. However, unlike the rotation situation it is hard to expect definitive
results. We restrict ourselves to a sample of results for that kind.

THEOREM 5.52 [18, Section 6]. For any natural number n there is a dense set of vectors
α = (α1, . . . ,αn) ∈ Rn whose coordinates satisfy no rational relation such that there exist
a diffeomorphism f ∈A arbitrary close to Sβ for some β and measurably conjugate to the
translation Tα on the torus Tn.
There exists a dense in the product topology set of vectors α = (α1,α2, . . .) ∈ R∞ whose

coordinates satisfy no rational relation such that there exist a diffeomorphism f ∈A arbi-
trary close to Sβ for some β and measurably conjugate to the translation

Tα :x → x + α (mod 1)

on the torus T∞.

THEOREM 5.53. Arbitrary close to any transformation Sβ for any β there exists a non-
standard ergodic diffeomorphism.

The proof is based on a smooth realization of a version of Feldman’s construction de-
scribed in [78, Section 8].

5.5.4. Toral actions and mixing transformations. The use of approximation type tech-
niques to produce mixing transformations and flows was pioneered by B. Fayad [43]. He
used reparametrizations of linear flows on the tori of dimension ! 3 to produce mixing by
carefully controlling behavior of the sequence of overlapping time scales. See Section 5.6.3
for a brief outline of the method. In [47] the techniques of reparametrization of linear flows
on T3 were combined with the explicit approximation by conjugation methods. The basic
setting is a compact smooth manifoldM with non-trivial smooth T3 action S = {Sv}v∈R3 ,
Sv+k = Sv if k ∈ Z3 and a smooth volume µ preserved by S .

THEOREM 5.54 [47, Theorem 6.2]. There exists a sequence γn ∈ Q3 and a sequence Hn

of diffeomorphisms preserving µ such that the sequence HnStγnH
−1
n converges in the C∞

topology to a flow preserving µ and mixing for this measure.

5.6. Time change

5.6.1. General results. Given a flow, Tt , the operation of time change produces a flow
with the same orbits as Tt but evolving at a different speed and with an invariant measure
accordingly changed with a suitable density.
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Time changes can be described in terms of R-valued untwisted one-cocycles over the
flow, see [8, Section 1.3m] for a discussion in very general context and [78, Section 9.3]
for basic definitions in the specific setting of flows. This operation is important in the topo-
logical and differentiable dynamics where the time change is assumed correspondingly
continuous and differentiable. We already discussed a specific case of time change in Sec-
tion 2.2.4.
Since every flow by Ambrose–Kakutani theorem can be represented as a special flow

over a measure preserving transformation, the time change produces a special flow over the
same transformation with a different roof function. In particular, if the roof functions ϕ and
ψ for special flows over the same measure preserving transformation T are cohomologous,
i.e.

φ = ϕ + h ◦ T − h

for a measurable function h then the special flows are isomorphic. The function h which
in the case of ergodic T is uniquely defined mod 0 up to a constant is sometimes called
transfer function.
The basic properties which are preserved by any time change are ergodicity (more gen-

erally, the structure of the decomposition into ergodic components) and the property of
entropy to be zero, a positive number, or infinity. Other spectral and non-spectral invariants
are in general not preserved.
Still it is a meaningful question to ask how the spectral properties of a flow may be

modified by a time change.
Two basic general results in this direction show that stochastic properties may be im-

proved by a proper time change. They are due to Kochergin [90] and Ornstein and
Smorodinsky [120] correspondingly.

THEOREM 5.55.
(1) For any ergodic flow there exists a time change which is mixing [90].
(2) For any ergodic flow with positive entropy there exists a time change which is a

K-flow [120].
In both cases the time change can be chosen arbitrary close to identity in a variety of

senses; for example, if a flow is represented as a special flow over a transformation the roof
function can be changed arbitrary little in the uniform norm.

5.6.2. Continuous and almost differentiable time changes. It is interesting and in fact
remarkable that in the continuous category the time changes described in the previous the-
orem can be made continuous and in differentiable category “almost” differentiable (with
derivative discontinuous only at one point). This follows from the analysis of cohomol-
ogy classes of cocycles which produce time changes. If two cocycles are cohomologous
then corresponding time changes are metrically isomorphic by a conjugacy which moves
each point along its orbit according to the solution of the cocycle equation. We follow the
presentation of [78, Section 10.2].

THEOREM 5.56. Let L ⊂ L1(X,µ) be a linear subspace of L1 dense in the L1 topology
and closed in the L∞ topology (uniform convergence almost everywhere). Then for every
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f ∈ L1(X,µ) the set Lf = {h ∈ L: h is cohomologous tof } is dense in the L∞ topology
in the set {h ∈ L,

∫
hdµ =

∫
f dµ}.

If we put L = C(X), the space of all continuous functions, we immediately obtain the
following statement which was originally proved in [120].

COROLLARY 5.57. Let X be a compact metric space, µ be a Borel probability nonatomic
measure on X, T :X → X be a measure-preserving transformation (not necessarily con-
tinuous). Then every real-valued cocycle f ∈ L1(X,µ) is cohomologous to a continuous
cocycle. Moreover the set of continuous cocycles cohomologous to f is dense in uniform
topology in the space of all continuous functions with the same integral as f .

Corollary 5.57 can be strengthened by specifying the values of a continuous function co-
homologous to f on any closed set F so that µ(X\F) > 0. Pushing the method described
above a bit further one obtains the result advertized above which looks quite striking at
first glance.

THEOREM 5.58. Let M be a compact differentiable manifold, µ be a Borel probability
measure on M , T :M → M be a measure-preserving transformation. Then every real-
valued cocycle f ∈ L1(M,µ) is cohomologous to a continuous cocycle f̄ which is contin-
uously differentiable except at a single point.

SKETCH OF PROOF. First, one finds a continuous cocycle f1 cohomologous to f which
is continuously differentiable outside a ball B1 of radius, say, 1/2 and can be extended
to a continuously differentiable function. This is possible by a stronger version of Corol-
lary 5.57 mentioned above. Then one approximates f1 in uniform topology by a contin-
uously differentiable cocycle g1 which coincides with f outside B1. If the L1 norm of
f1 − g1 is small enough one can find a cocycle f2 cohomologous to f1 (and hence to f )
which coincides with f1 outside a smaller ball B2 ⊂ B1 of radius 1/4 and extends to a
continuously differentiable function and such that the support of the transfer function ψ1
has measure less than 1/2. Continuing by induction one constructs on the nth step the
cocycle fn continuously differentiable outside of a ball Bn ⊂ Bn−1 of radius 2n+1 which
coincides with fn−1 outside of the ball Bn−1 and extends to a continuously differentiable
function and such that a transfer function ψn connecting fn with fn−1 is supported on
a set of measure less than 2n. In the limit the function f̄ = limn→∞ fn is continuous
everywhere and continuously differentiable outside of the single point

⋂∞
n=1Bn. By the

Borel–Cantelli lemma the series
∑∞

n=1ψn converges and hence gives a transfer function
between f1 and f̄ . Since f1 is cohomologous to f this finishes the proof. #

5.6.3. Regular time change in various classes of systems. Notice that the property of
almost differentiability in Theorem 5.58 cannot be replaced by any reasonable uniform
property stronger than continuity.

Hyperbolic and parabolic systems. For example, Hölder time changes behave quite
differently for many classes of dynamical systems such as Anosov flows or special flows
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over subshifts of finite type [79, Section 19.2], [78, Sections 11.3–4]. In those cases on the
one hand, there are infinitely many moduli for existence of a measurable solution of the
cohomological equation, and, on the other, robustness of spectral properties. The spectrum
is either countable Lebesgue or that plus pure point component with single frequency. The
latter is impossible for example for contact Anosov flows. Thus, in the hyperbolic (and to
a certain extent partially hyperbolic situation [78, Section 11.5]) spectral properties exhibit
robustness under reasonably regular time changes with the countable Lebesgue spectrum
prevailing.
A somewhat similar albeit more subtle and less understood situation exists for parabolic

systems. Since these effects are in essence different from those produced by combinatorial
constructions which dominate this part of the survey we will discuss the topic later in
Section 6.3.

Elliptic systems: codimension one. Now we will consider specific situations where in-
teresting effects can be achieved by producing a nice (smooth, analytic Hölder, etc.) time
change with interesting properties by means of a construction which successfully controls
behavior at various time scales. In this respect this class of constructions fits with the gen-
eral theme of this part of the survey. We already discussed time changes in a linear flow on
the two-dimensional torus in Section 2.2.4. We will discuss the situation in more detail and
comment on methods used. First, notice that for any irrational slope and for a sufficiently
smooth time change (or, equivalently, the roof function for the special flow) the resulting
flow (or the time one transformations) allows sufficiently good cyclic approximation to
guarantee simple singular spectrum and the absence of mixing, see Proposition 5.39; the
latter property also follows under much weaker assumptions from Theorem 5.61 below.
Weak mixing of course does not follow from cyclic approximation. It can be produced
by several different methods. To produce genericity one can use perturbation with small
sinusoidal waves similar to those described below for producing mixing in higher dimen-
sion. A more interesting method deals with the study of special flows with a fixed roof
function and varying translation in the base. This method leads to a conclusion that, while
other types of behavior are possible, under certain assumptions, weak mixing is the only
alternative to at least measurable conjugacy to the linear flow.
First, if the roof function is a trigonometric polynomial of if the translation is Diophan-

tine and the function is C∞ then the roof function is cohomologous (with the transfer
function which is correspondingly itself a trigonometric polynomial of a C∞ function)
to its average and hence the flow is smoothly conjugate to a constant time suspension or,
equivalently to a linear flow.
Shklover [146] proved the following converse to the statement about trigonometric poly-

nomials.

THEOREM 5.59. For any real-analytic function f other than trigonometric polynomials
(in other words those with infinitely many non-zero Fourier coefficients) there is always an
α such that the special flow over Rα with the roof function f is weakly mixing.

A more quantitative statement connecting the approximation in the base with the decay
of Fourier coefficients for the roof function is in [78, Theorem 13.7].
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THEOREM 5.60. Let h(x) = ∑
n1=0 hn exp2π inx be a C2 real valued function on S1 with

zero average. Suppose for a certain sequence of rational numbers pn/qn,

qn|α − pn/qn|∑∞
k=1 |hkqn |

→ 0 and
|hqn |∑∞

k=1 |hkqn |
> c > 0.

Then for any h0 and r the cocycle exp ir(h0+h(z)) is not a coboundary and consequently
the special flow over Rα with the roof function h0 + h(z) is weakly mixing.

Developing this method and using new ideas involving a central limit theorem to treat the
case of intermediate approximation Fayad and Windsor proved in [50] that under stronger
conditions on regularity of decay of Fourier coefficients than in Theorem 5.60 (satisfied,
for example, when they are close enough to a geometric progression) there is a dichotomy
between solvability of the cohomological equation in L2 (and hence the pure point spec-
trum with two “right” frequencies) and weak mixing.
The following general criterion for absence of mixing was found in [76].

THEOREM 5.61. Any special flow with the roof function of bounded variation over an
interval exchange transformation is not mixing.

The proof is based on using the return properties of the base transformation (Theo-
rem 5.22) and the bounded variation of the roof function to show that returns in the base
produce returns for the flow within a bounded time. Thus since a bounded from below pro-
portion of measure returns close to itself in the base at a certain sequence of time moments
growing to ∞ the same can be said about a fixed proportion of measure for the flow for a
sequence of fixed length time segments. This contradicts mixing.
This result has been recently strengthened by Fraczek and Lemańczyk.

THEOREM 5.62 [57]. Any special flow with the roof function of bounded variation over
an ergodic interval exchange transformation is disjoint from any mixing flow.

Mixing can be produced with a minimal loss of regularity. For example, any Lipschitz
time change in a linear flow on T2 is not mixing by Theorem 5.61. One the other hand
Kochergin proved the following converse to that statement.

THEOREM 5.63 [93]. For any modulus of continuity ω weaker than Lipschitz, i.e. such
that limt→0

t
ω(t) = 0 one can find a linear flow on T 2 and a time change with modulus of

continuity ω which is mixing.
Equivalently, one can find a rotation Rα and a function f with modulus of continuity ω

such that the special flow over Rα with the roof function f is mixing.

The construction is of inductive character producing approximate mixing on growing but
overlapping time scale and is somewhat similar to a more subtle and specialized version of
the general construction from [90].
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Elliptic systems: higher codimension. An essential new phenomenon for time changes
in linear flows on Tk , k ! 3, or, equivalently, in special flows over translations on Tk ,
k ! 2, is a possibility of mixing in very regular situations including real analytic [43].
This is a very special situation impossible in the Diophantine context and non-generic in
Liouvillean. It is produced by an inductive combinatorial construction which we briefly
outline for the case of a special flow over a translation of T2 with coordinates (x, y).
If we assume that the rotation in the x direction is periodic with period n consider an

addition to a given roof function of the form a sin 2πnx then the successive returns will
develop sinusoidal waves which at the time scale grater than n will produce approximate
mixing for sets transversal to the x direction. Now we add a very small translation in the x

direction to keep this effect for the perturbed system for a long enough time until the effect
of a similar perturbation in the y direction of much greater frequency but much smaller
magnitude takes over. This relies on a proper very special choice of periodic approxima-
tions in the x and y direction. The scales when mixing is produced by the stretching in
the two directions overlap but because of the independence of the perturbations they do
not interfere and cancel each other. Thus genuine albeit fairly slow mixing is achieved for
the limit transformation whose base translation has the form (α,β) with α = ∑∞

k=1
1
nk
,

β = ∑∞
k=1

1
mk
with nk 4 mk 4 nk+1 and the roof function is of the form

∞∑

k=1
ak sinnkx + bk sinmky (5.8)

with ak : bk : ak+1. The construction can be carried out in such a way that the func-
tion (5.8) is real analytic.
There are variations of this method where instead of sinusoidal waves different more

elaborate shapes are used. For example, using some version of Dirichlet kernels one can
combine mixing with Fayad’s criterion of slowly coalescent periodic approximation for
singularity of the spectrum which is compatible with mixing, see Proposition 5.46.

THEOREM 5.64 [46]. There exists a C∞ time change of a linear flow on T3 which is
mixing and has singular spectrum.

5.7. Inducing

The operation analogous to time change in the discrete case is the operation of inducing.
The natural topology in the space of measurable subsets of a given space (X,µ) is given
by the metric

d(A,B) = µ(A∆B).

Denote the collection of all classes mod 0 of measurable sets provided with this metric
by X .
The following result is a counterpart of Theorem 5.55.
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THEOREM 5.65.
(1) Any ergodic transformation induces mixing on a dense in X class of sets [58].
(2) Any ergodic transformation with positive entropy induces K-automorphisms on a

dense in X class of sets [120].

The method of proving Theorems 5.55 and 5.65 is similar in spirit to cutting and stacking
constructions albeit limited to introduction of spacers since the return maps for the towers
are fixed.
De la Rue improved the first statement of the previous theorem:

THEOREM 5.66 [35]. An ergodic transformation induces a transformation with Lebesgue
spectrum on a dense in X class of sets.

Multiplicity of Lebesgue spectrum in this construction is not known. Thus the following
problem is open:

PROBLEM 5.67. Does any ergodic transformation with zero entropy induce a transforma-
tion with countable Lebesgue spectrum?

De la Rue in [36] has produced a spectral type which cannot be obtained in a standard
transformation, i.e. on any induced of an irrational rotation. We will discuss this result
based on the theory of Gaussian dynamical systems in Section 6.4.3.
Positive answer to the following problem would require an essentially new construction.

PROBLEM 5.68. Does any ergodic transformation with zero entropy induce a transforma-
tion with simple spectrum?

Conze [27] has proved that it is in fact generic that an induced of an ergodic transforma-
tion is weakly mixing. Notice that mixing is not generic.
In [78, Section 7] transformations induced by a standard transformation on various sets

are considered. The following result is parallel to Theorem 5.47.

THEOREM 5.69. Let T be a standard measure-preserving transformation. Given a type T
and a speed g(n), the set of all A ∈ X such that the induced transformation TA admits a
periodic approximation of type T with speed g(n) is a residual set in X .

All the standard corollaries follow such as simple continuous singular spectrum which
is mutually singular with all its convolutions. Since inducing (and the inverse operation of
taking a special transformation which is the discrete time equivalent of the special flow)
involves cohomological equations with integer values, interesting questions related with
behavior of regular (analytic, smooth, etc.) real-valued cocycles which played the central
role in Section 5.6.3 do not have direct equivalents in this setting.
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5.8. Spectral multiplicity, symmetry and group extensions

5.8.1. Introduction. Most of this section deals with the realization problem for various
sets of essential values of spectral multiplicity; see the preview in Section 3.6.2. Success in
treating of this problem via appropriate constructions is based on the combination of two
principal elements:
(i) Symmetry which allows to produce for certain classes of transformations various
intertwining operators in L2 (often but not always coming from commuting mea-
sure preserving transformations) which interchanges various subspaces and hence
guarantees that certain parts of the spectrum come with multiplicity, and

(ii) Approximationwhich shows that “minimal” multiplicities compatible with the sym-
metry are actually realized. Approximation properties come from combinatorial
constructions. Sometimes it is sufficient to consider generic data within a given class
of transformations; in other cases more careful inductive process might be needed.

The subtlety of using approximation techniques is in that it is not always sufficient to
produce approximation which allows to obtain an above estimate for the multiplicity using
Theorem 1.21 or something similar but (in the case of non-homogeneous spectrum) one
needs separate estimates in various subspaces responsible for parts of the spectrum with
different values of the multiplicity function.

5.8.2. Homogeneous spectrum of multiplicity two and Cartesian products. Ergodic mea-
sure preserving transformations with homogeneous spectrum of multiplicity two were
found simultaneously and independently by Ryzhikov [144] and Ageev [16]. They used
approach of [78] and improved the estimate given by Proposition 5.41.

THEOREM 5.70. For a generic in the weak topology measure preserving transformation T

the Cartesian square T × T has homogeneous spectrum with multiplicity two.

PROOF. The symmetry here is the involution J : (x, y) !→ (y, x) which guarantees that
essential values of the spectral multiplicity are even (see Proposition 4.2) and the approxi-
mation is, first, good cyclic approximation for T which insure simple spectrum and hence,
multiplicity two for the part of the spectrum coming from functions depending only on
one coordinate and, second, a slightly generalized version of good approximation of type
(n,n + 1) (see Section 5.4.2). Namely, for a given natural number m we will consider
a good linked approximation of type (n,n + m) by periodic processes with two towers
whose size is bounded away from zero and heights differing by m. Existence of this kind
of approximation guarantees that weak limit of powers of T contains a linear combination
α Id+(1−α)T . This of course means that the limit of UT n in the strong operator topology
contains α Id+ (1− α)UT .
It is sufficient to prove that the maximal spectral multiplicity of UT ×T is at most two.

Thus the theorem will follow from the following lemma

LEMMA 5.71. If T admits a good cyclic approximation and a good approximation of type
(n,n + m) for any natural m and f is a cyclic vector for UT then the functions f (x)f (y)

and f (x)f (T y) generate L2.
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PROOF. Since f is a cyclic vector for UT the functions of the form f (T kx)f (T my) gener-
ate L2 for the Cartesian product. Thus it is sufficient to show that any function of the form
f (x)f (T my) belongs to the space generated by f (x)f (y) and f (x)f (T y) which we will
denote byH . To simplify notations let us denote f (T mx)f (T ky) bym×k and use similar
notation for linear combinations of such functions. From the invariance one gets for every
m ∈ Z,

m × m ∈ H and m × (m + 1) ∈ H.

Thus from the approximation criterion (α0 + (1 − α)m) × (α0 + (1 − α)m) ∈ H hence
by invariance 0× m + m × 0 ∈ H . Similarly by taking limits of some iterates of 0× 1 we
obtain 0× m + (m − 1) × 1 ∈ H and hence

m × 0+ (m − 1) × 1 ∈ H. (5.9)

Using these inclusions inductively form = 2,3, . . . we obtain thatm×0 ∈ H . Form = 2
one obtains 0×2+1×1 ∈ H and hence 0×2 ∈ H . Assuming that k×0 ∈ H for k " m, in
particular, (m−1)×0 ∈ H and hencem×1 ∈ H we get from (5.9) that (m+1)×0 ∈ H .#

This finishes the proof of the theorem. #

Looking back at the structure of the spectrum for the Cartesian square described in
Proposition 4.2 we deduce interesting arithmetic structure of the maximal spectral type for
a transformation T whose Cartesian square has spectrum of multiplicity two. First, any
measure µ of the maximal spectral type is singular with respect to its convolution µ ∗ µ

and, second for almost every with respect to µ ∗ µ λ ∈ S1 the conditional of µ × µ on the
circle λ1λ2 = λ is concentrated in two symmetric points (λ01,λ

0
2) and (λ02,λ

0
1).

A more sophisticated analysis allows to describe essential values of spectral multiplicity
for the mth Cartesian power of a generic measure preserving transformation where the
symmetry is given by the symmetric group Sm of permutations of components and where
the maximal spectral multiplicity is at least m!.

THEOREM 5.72 [144,16]. For a generic measure preserving transformation T the mth,
m ! 3, Cartesian power T (m) has m − 1 different values of the spectral multiplicity:
m,m(m − 1),m(m − 1)(m − 2), . . . ,m!.

5.8.3. Homogeneous spectrum of arbitrary multiplicity and group actions. Measure pre-
serving transformations with homogeneous spectrum of arbitrary multiplicity (including
new examples with multiplicity two) were recently found by Ageev [17] using a different
type of symmetry. His main idea is quite brilliant although in retrospect it looks natural.
Ageev considers the following group Gm. It is a finite extension of Zm and has genera-

tors T1, . . . , Tm, S where T1, . . . , Tm commute, T1 ·T2 · · · · ·Tm = Id and Ti+1 = S ·Ti ·S−1

for i = 1, . . . ,m − 1. Notice that Sm commutes with T1, . . . , Tm and thus the group Gm is
an m-fold extension of the Abelian group with generators T1, . . . , Tm−1, Sm.
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THEOREM 5.73. For a generic action α of the group Gm by measure preserving trans-
formations of Lebesgue space the transformation α(Sm) has homogeneous spectrum of
multiplicity m.

The upper bound on the spectral multiplicity is provided by simplicity of the spectrum
for S; this can be achieved using a proper version of periodic approximation theory for
actions of Gm. It is a standard corollary of the Spectral Theorem 1.8 that then the spec-
trum of the mth power has multiplicity at most m. Spectral theory for this group provides
for symmetry. In particular if S is weakly mixing (which can also be guaranteed by ap-
proximation arguments) there are m mutually orthogonal Sm invariant subspaces where
the restriction of the Koopman operator are unitarily equivalent so by Corollary 1.20 the
values of spectral multiplicity are multiples of m.

5.8.4. Non-homogeneous spectrum, group extension and factors. These examples which
produced successively more general sets of values of spectral multiplicities from {1,m}
[134], to finite [135] and infinite [65] sets containing 1 and invariant under taking the least
common multiple, to arbitrary sets containing 1 [100], are all based on finite and, more
generally, compact group extensions of transformations admitting good cyclic approxima-
tion with cocycles possessing certain symmetry. The idea actually goes back to the work of
Oseledets [123] who was the first to construct an example of a measure preserving trans-
formation with non-simple spectrum of bounded multiplicity. However, his upper estimate
based on Theorem 5.24 was very crude. Oseledets’ example was the starting point for
Robinson who introduced finer methods of estimating the multiplicity from above. Here
we will describe Robinson’s first construction since it shows both the symmetry and ap-
proximation elements in a clear and suggestive way. We follow [78].
We will consider T , the double group extension of a transformation T0. T :X×Z/mZ×

Fp → X × Z/mZ × Fp where p is a prime number specified below and Fp is the finite
field with p elements, of the following special form

T (x, y, z) =
(
T0x,γ (x) + y,φ(y) + z

)
. (5.10)

Here γ :X → Z/mZ is a measurable function which will be specified to provide approxi-
mation properties needed to the above estimate of the spectral multiplicity. For anym there
exists a prime number p and an isomorphism φ :Zm → G ⊆ Fp , where G is a subgroup
of the multiplicative group F∗

p of the finite field Fp with p elements. These are the data
which go to the second extension.

THEOREM 5.74. For a generic in weak topology T0 and a generic in L1 set of cocycles
γ the transformation T defined by (5.10) is weakly mixing and has {1,m} as the set of
essential values of the spectral multiplicity.

REMARK. In fact, genericity arguments are not necessary as the proof below shows.
The required conditions are certain approximation properties which can be guaranteed by
choosing, for example, a certain exchange of three intervals as T0 and a certain piecewise
constant function as γ .
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PROOF. Associated with a finite group extension there is a natural orthogonal decomposi-
tion of L2 into UT -invariant subspaces corresponding to the characters of the group. The
additive characters of Fp are given by χw(z) = exp2π izw/p where w ∈ Fp , so that if T

is given by (5.10) we obtain an invariant orthogonal decomposition

L2(X × Z/mZ × Fp) =
⊕

w∈Fp

Hw,

where

Hw =
{
χw(z)f (x, y): f ∈ L2(X × Z/mZ)

}
.

Let us define a permutation σ :Fp → Fp by σ (w) = φ(1)w. For w 1= 0 we also define the
operator

Sw :Hw → Hσ (w) by Sw

(
χw(z)f (x, y)

)
= χσ (w)f (x, y + 1).

Since χσ (w)(φ(y)) = χw(φ(y + 1)), one has UT |Hσ (w) · Sw = Sw · UT |Hw . Now let us
examine the permutation σ . It fixes 0 and has m′ = p−1

m cycles of length m. This explains
how the operators Sw permute the subspaces Hw . We will choose an arbitrary element
θk , k = 1, . . . ,m′, from the kth cycle of σ , and for j = 0, . . . ,m − 1 we will define the
subspace

Hj = Hσ j (θ1) ⊕ Hσ j (θ2) ⊕ · · · ⊕ Hσ j (θm′ ).

We will also define

H ∗ = H0.

It is clear that L2(X × Z/mZ × Fp) = H ∗ ⊕ H 0 ⊕ · · · ⊕ Hm−1. The linear operator

Sj :Hj → Hj+1, j 1= ∗,

is defined in the natural way so that

Sj |HwHw = Hσ (w) ⊆ Hj+1.

It follows that

Sj · UT |Hj = UT |HJ+1 · Sj

and thus since the spectra in all of the spaces Hj are identical, the maximal spectral multi-
plicity of T is at least m. To obtain the estimate of the maximal spectral multiplicity for T
from above we will need two types of approximation for the first extension T1. In particu-
lar, these will guarantee that UT1 , or equivalently UT |H ∗ , has simple continuous spectrum.
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They are, (i) a good linked approximation of type (n,n + 1) (see Proposition 5.40) and
(ii) a certain good approximation with m towers of equal height, which are related to each
other by shifts (x, y) → (x, y + k). By extending the approximation for T1 to the second
extension, we obtain from (ii): (iii) a good approximation for T with m towers. Since at
least one of the towers has size close to 1/m, Theorem 5.10 implies that maximal spectral
multiplicity for T is no greater than m. This in particular implies ergodicity of T since
otherwise there would be invariant functions in every Hj in addition to constants contra-
dicting the above estimate for the spectral multiplicity. This in turn implies weak mixing
since otherwise there would be eigenfunctions with the same eigenvalue in every Hj and
their ratios would produce non-constant invariant functions. By a combinatorial analysis
of the approximating cocycles γn, measurable with respect to the partitions involved in the
approximation of T0, one can show that (i), (ii) and (iii) hold for a generic set of cocycles
γ in the L1 topology. Since the maximal spectral types in all Hj are identical the above
estimate of the maximal spectral multiplicity by m implies that the spectra in those sub-
spaces are simple and with maximal spectral type singular with respect to that in H ∗. This
implies that set of essential values of spectral multiplicity is {1,m}. #

For constructions with many values of spectral multiplicity the algebraic or “symmetry”
part is more complicated but similar in principle. For infinite sets of values finite exten-
sions are not sufficient and other compact group extensions are used. The most general
case is represented by [100, Algebraic Lemma]. Approximation part has to be done differ-
ently though. The above estimate is not sufficient to conclude that all components in the
spectrum which come from the algebraic construction are mutually singular and have max-
imal possible multiplicity. The solution is to consider approximation constructions directly
for operators in invariant subspaces, to produce simple spectrum for those operators and
guarantee mutual singularities of spectra.

5.8.5. Finite extensions and spectral properties. In [69] a construction was found which
produced finite extensions of simple systems with certain functions with Lebesgue spectral
measure. Based on this work Matthew and Nadkarni [112] have constructed a two points
extension of an adding machine which they showed has a Lebesgue component of mul-
tiplicity 2. The Matthew–Nadkarni example involves a construction of a cocycle over the
adding machine which takes values in Z/2Z in such a way that the corresponding two
point extension possesses a natural partition in two sets of equal measures whose iterates
are pairwise independent. By replacing the adding machine in the base and modifying the
construction appropriately Ageev [15] proved

THEOREM 5.75. For any n ! 1 there exists a weakly mixing transformation with essential
values of spectral multiplicity {1,2n} where the component of multiplicity 2n is Lebesgue.

The construction is also a finite extension, but this time, of a weakly mixing rank one
transformation. See also [103] for examples with Lebesgue component of any given even
multiplicity in the spectrum.
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6. Key examples outside combinatorial constructions

6.1. Introduction

Of the four principal classes of systems which appear in smooth dynamics, two, hyper-
bolic and (typical) partially hyperbolic, are well understood from the point of view of
ergodic theory. Modulo some sufficiently trivial modifications ergodic behavior of such
systems with respect to an absolutely continuous invariant measure (as well as some other
good invariant measures, such as maximal entropy or more general Gibbs measures) is de-
scribed by the Bernoulli model which has countable Lebesgue spectrum and is classified
up to a measurable isomorphism by the single invariant, entropy [3, Sections 2.3 and 3].
On the other hand, it is worth noticing that certain partially hyperbolic systems exhibit
complicated and non-standard ergodic behavior. For example there are partially hyperbolic
volume preserving diffeomorphisms which are K but not Bernoulli [77].
Elliptic systems admit in addition to the basic model of the toral translation a variety

of behaviors which are well modeled by several kinds of combinatorial constructions dis-
cussed above.
The remaining class, parabolic systems, characterized by moderate and more or less

uniform growth of orbit complexity do not naturally appear in the context of combinatorial
constructions. In fact, it would be fair to say that many of the examples of the greatest
intrinsic interest produced by combinatorial construction display phenomena which are
difficult to render in the smooth situation.
In the next two sections we briefly review ergodic properties of two classes of parabolic

systems which appear most naturally and are best understood. Key results concerning those
systems are among the deepest in the field of ergodic theory and they yield remarkable ap-
plications outside the field, see [10]. In the last section we discuss another class of examples
which came from probability theory and which provide a remarkably flexible and power-
ful tool for the spectral realization problem; in particular, the first example of a measure
preserving transformation with simple continuous spectrum was found among Gaussian
systems by Girsanov in 1958 [61] almost a decade earlier than direct methods based on
rank and periodic approximation were developed.

6.2. Unipotent homogeneous systems

6.2.1. Definitions and simple examples. A homogeneous system has naturally defined
linear part namely the adjoint action on the Lie algebra of G.
If all eigenvalues of the linear part of a homogeneous map are equal to one the map is

called unipotent. A one-parameter group of unipotent maps is called a unipotent flow. If the
linear part is semisimple, i.e. linearizable over complex numbers the flow acts by isometries
with respect to a Riemannian metric and hence the spectrum is always pure point. Linear
flows on the torus are examples; more generally this can happen on Euclidean manifolds
(see Section 1.4b and Theorem 2.3.3 in [10]).
More interesting behavior appears when the linear part has non-trivial Jordan blocks. For

example, mixture of pure point and countable Lebesgue spectrum appears in homogeneous
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flows on nilpotent groups which in many respects are similar to unipotent affine maps on
the torus like those in Examples 3.17 and 3.18.

6.2.2. Horocycle flows and property R. Horocycle flows which appeared in Section 2.1.3
are the simplest and best understood non-trivial examples among unipotent flows on ho-
mogeneous spaces of semisimple Lie groups.
We showed that they have countable Lebesgue spectrum which appears quite often in

ergodic theory. However, beyond that horocycle flows possess very striking ergodic prop-
erties which imply strong rigidity statements. These properties are summarized in the fol-
lowing theorems due to M. Ratner [130]:

THEOREM 6.1. If λ is an ergodic self-joining of a horocycle flow which is not the product
measure, then it is a finite extension of its two marginals.

REMARK. This statement is very close to simplicity. Simplicity is saying that V = H, here
we have that V and H both have finite fibers in V ∨H.

THEOREM 6.2. Horocycle flows have the pairwise independently determined property
(see Definition 4.15).

This implies mixing of all orders for the horocycle flows. As a consequence of these
theorems, Ratner has obtained the following rigidity results:

THEOREM 6.3. If two horocycle flows are measure theoretically isomorphic they are al-
gebraically isomorphic.

THEOREM 6.4. Every factor of a horocycle flow is algebraic.

THEOREM 6.5. The time one transformation of every horocycle flow is a factor of a simple
transformation. In case the subgroup γ is maximal and not arithmetic [4, Section 1.5c],
the horocycle flow has minimal self-joinings as an R action.

A key property for the understanding of the horocycle flow is the R property of Ratner
which can be formulated in a general context.
Let Tt be a flow on a metric space with σ -compact metric d preserving a Borel measure.

DEFINITION 6.6. The flow Tt has the property Rp , p 1= 0 if the following is true:
For every ε > 0 and N > 0 there exist α(ε), δ(ε,N) > 0 and a subset A(ε,N) ⊂ X such

that m(A) > 1− ε with the property that if x, y ∈ A and d(x, y) < δ(ε,N) and y is not on
the Tt orbit of x, then there are L = L(x, y) and M = M(x,y) ! N with M/L ! α such
that if

K
+
−(x, y) =

{
n ∈ Z ∩ [L,L + M]: d

(
Tnp(x), T(n±1)p(y)

)
< ε

}
,
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then

|K+|/M > 1− ε or |K−|/M > 1− ε.

It is remarkable that this property of “slow relative drift of nearby points” is also satisfied
by the Chacon transformation.
It is not known how far the R-property is from simplicity.

PROBLEM 6.7. Does there exist a flow satisfying the R-property such that its time one
map is disjoint from all simple transformations?

6.2.3. Ratner theory. Recall that spectral properties of unipotent homogeneous systems
are fairly standard: as for all homogeneous systems in general the mixture of pure point and
countable Lebesgue spectrum. In the most interesting case of unipotent maps and flows on
homogeneous spaces of semisimple Lie groups the spectrum is countable Lebesgue.
On the other hand, these systems exhibit very interesting ergodic properties beyond

spectrum. For example, they provide examples of infinitely many systems with countable
Lebesgue spectrum and zero entropy which are pairwise not Kakutani equivalent, namely
different Cartesian powers of any horocycle flow [129]. The distinguishing invariant is of
“slow entropy” type but adapted to the Kakutani rather than Hamming metrics in the spaces
of sequences coding orbit segments; see [75] for the discussion of metrics and [83] for a
general discussion of these invariants.
Isomorphisms, factors and joining between unipotent systems can be systematically

studied with the powerful tool, the Ratner Measure Rigidity Theorem [132] which basi-
cally states that any invariant Borel probability ergodic measure is of algebraic nature. For
a detailed exposition of Ratner theory and its applications see [10, Section 3].
It is worth noticing that while great attention has been paid to the number theoretical

applications of Ratner’s rigidity for unipotent systems there has been no systematic study
of its implications to the ergodic theory of such actions, as has been done for the horocycle
flows. Certainly it deserves to be looked at.

6.3. Effects of time change in parabolic systems

We will now complete the discussion of Section 5.6.3 of known spectral and other ergodic
properties which appear under sufficiently nice time change in principal classes of systems.

6.3.1. Time change in horocycle flows. Let v be the vector field generating a horocycle
flow. In [98] it is proved that if C1 time change is not too large, namely if f − Lf > 0
where L is the derivative with respect to the geodesic flow then the flow generated by
f v is mixing. The idea of the proof is of course to show that there is enough uniform
twist across the orbits so that a small piece gets spread sufficiently uniformly across the
space. However, the rate of mixing is not controlled well enough to guarantee absolutely
continuous or Lebesgue spectrum. Still this looks plausible.
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CONJECTURE 6.8. Any flow obtained by a sufficiently smooth time change from a horocy-
cle flow has countable Lebesgue spectrum.

Cohomological equations over the horocycle flows has been throughly studied by
Flaminio and Forni in [53]; see [78, Section 11.6.2] for a summary. While the results
(growing number of invariant distributions of increasing orders) indicate complex struc-
ture of measurable isomorphism classes they do not shed direct light on spectral or other
ergodic properties of time changes.
In an earlier work Ratner [131] shows that rigidity of isomorphisms between horocycle

flows is partly inherited by time changes with very moderate degree of regularity in the
sense that isomorphic time changes appear only for isomorphic horocycle flows. A key
ingredient in the proof is showing property R for this class of time changes.

6.3.2. Flows on surfaces of higher genus. Another class of parabolic systems after unipo-
tent homogeneous systems is represented by area preserving flows on surfaces with finitely
many fixed points. In this case the section maps on transversals are one-dimensional, in fact
they are interval exchange transformations. On the other hand, the slowdown near a fixed
point leads to strong stretching which albeit not uniform in space is somewhat similar in
effects with the uniform transverse stretching in unipotent systems.

A model example. The simplest example where it is evident that the slowdown and
not transverse dynamics plays the main role in determining the asymptotic behavior is a
flow on T2 obtained from an irrational linear flow by slowing down near a single point. In
order to have a absolutely continuous measure preserved the inverse of the velocity change
function must be integrable and the measure will still have a singularity. An alternative
way is to change the flow in a neighborhood of a point so that in a local linear coordinate
system (x, y) in which the linear flow is generated by the vector field ∂/∂x and hence
is Hamiltonian with Hamiltonian function y to have the new flow with the Hamiltonian
which locally has the form y(x2 + y2)k and gradually changes to y. One can make the
change carefully so that the section map on a circle which still be a rotation and the flow
will be isomorphic to the special flow with the roof function smooth except of one point
near which it has an integrable singularity of a power type. In contrast with the case when
the roof function has bounded variation such a flow is mixing [91]. The method is similar
to that of [98] albeit the estimates are more subtle. Notice that unlike the latter case flows
here the direction of stretching is different on two sides of the singularity.

Degenerate and non-degenerate saddles. A natural class of systems of this kind con-
sists of area preserving flows on surfaces of genus! 2 with singularities of the saddle type.
To include the previous example one may also allow a finite number of stopping points. The
section map on a transversal is an interval exchange transformation and return time func-
tion has singularities at the endpoints of the intervals. There is an interesting difference
between non-degenerate saddles (zeroes of the first order for the vector field) and other
degenerate saddles which include stopping points (the latter can be considered as saddles
with two separatrices). Non-degenerate saddles produce milder symmetric logarithmic sin-
gularities of the return time functions whereas others produce power singularities; in the
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latter case if the flow is ergodic it is mixing [91]. This in particular implies the following
existence result:

THEOREM 6.9. There is an area preserving mixing flow of class C∞ on any close surface
other than the sphere, projective plane and Klein bottle.

On the other hand, if the section map happens to be a rotation then any flow with only
non-degenerate saddles is not mixing [92].
An interesting phenomenon appears when the singularities of the return time function

are logarithmic but asymmetric; this still may produce mixing [87]. This situation appears,
for example, on the torus for a flow with a separatrix loop.
Thus sufficiently strong stretching due to power or asymmetric logarithmic singularities

of the return time function produces mixing while slightly weaker symmetric logarithmic
singularities do not if the base transformation is a rotation (this can be explained from the
point of view of Fourier analysis, see [105]). However mixing properties of typical flows
on higher genus surfaces, namely flows with zeroes of order one, remain unknown.

PROBLEM 6.10. Does there exist a mixing special flow over an interval exchange trans-
formation with the roof function smooth except for symmetric logarithmic singularities at
the interval endpoints?

Also little is known about the spectral properties of mixing flows. Some estimate of
correlation decay have been obtained but they are too weak to conclude that the spectrum
is absolutely continuous. Nothing is also known about multiplicity of the spectrum.

Cohomological equations. Cohomological equations over interval exchange transfor-
mations and related classification of flows on surfaces have been studied by Forni in two
very powerful papers [55,56]. Those results contain some of the deepest insights into in-
terplay between ergodic theory and harmonic analysis. There are important applications to
the speed of convergence of ergodic averages for various classes of functions. See [5] for
an exposition of Forni’s work.
However, as is the case with horocycle flows, there are no direct implications for spectral

and other invariant under metric isomorphism ergodic properties of the flows.

6.4. Gaussian and related systems

6.4.1. Spectral analysis of Gaussian systems. For a detailed introduction to the subject
see [29, Chapter 14].
Recall that from the “classical” ergodic point of view, given a measure preserving trans-

formation T on a measure space (X,µ) and a measurable function f on X, the sequence
Yn = f ◦ T n, n ∈ Z, defines a stationary stochastic process. A stochastic process can then
be considered as a measure preserving transformation together with a measurable func-
tion f .
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DEFINITION 6.11. A stationary process Xn,n ∈ Z, with zero mean defined on a proba-
bility space (Ω,A,P ) is called Gaussian if for all n ∈ Z, m ∈ N the law of the m-tuple
(Xn,Xn+1, . . . ,Xn+m−1) is Gaussian (and independent of n). The shift transformation Tσ

defined by T (Xn)n∈Z = (Xn+1)n∈Z is obviously measure preserving. It is often called the
Gaussian dynamical system generated by the process Xn.
The spectral measure of the Koopman operator associated to T restricted to the closure

of the space of linear combinations of Xn is called the spectral measure of the Gaussian
process.

We will soon see how this measure determines the maximal spectral type of the corre-
sponding Gaussian dynamical system. The covariance matrix of the stationary Gaussian
process Xn, n ∈ Z, E(XnXn+m) is entirely determined by the spectral measure σ :

E(XnXn+m) =
∫

S1
eixm dσ.

Conversely, given a positive symmetric measure σ on the circle, there exists a stationary
Gaussian process with zero mean Xσ

n , n ∈ Z, with associated shift transformation Tσ such
that

E(XnXn+m) =
∫

S1
eixm dσ.

A way to construct Xσ
n is to first consider a probability space (Ω,A,P ) on which a

family Zn, n ∈ Z, is defined, consisting of independent Gaussian random variables with
law N(0,1) and with H being the L2-closure of the linear span of the Zn, n ∈ Z. The Zn

are thus an orthonormal basis forH and every element inH is a random variable with zero
mean and a Gaussian distribution law. Consider the operator Uσ on H which is isometric
to the unitary operator M on L2(S1, dσ ) defined by g → eixg (as in Theorem 1.1), by
means of an isometry V between H and L2(S1, dσ ). (Uσ = V −1MV .) Then

Xσ
n = Un

σ

(
V −11

)
, n ∈ Z,

is a Gaussian process which obviously satisfies

E
(
Xσ

n Xσ
n+m

)
=

∫

S1
eixm dσ.

Let B(H) be the smallest σ -algebra which makes all elements in H measurable. Then
L2(B(H)) is the direct sum of orthogonal spaces H(n), n ∈ N (the Wiener chaos) where
H(n) is the orthocomplement of the direct sum of the H(k), 1" k " n − 1, in the closure
of the linear space generated by the polynomials of degree n in variables which are in H .
These spaces are invariant under UTσ and the spectral measure of UTσ restricted to H(n)

is the n-fold convolution σ (n). Thus we can calculate the maximal spectral type of the
Gaussian system.
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PROPOSITION 6.12. The maximal spectral type of the Gaussian transformation Tσ is the
sum of the spectral measure σ and all it convolutions σ (n).

COROLLARY 6.13. Tσ is ergodic only when σ is non-atomic, and in that case it is weakly
mixing.

If a symmetric measure σ on S1 is the sum of two symmetric measures σ1 and σ2
which are mutually singular, Tσ is isomorphic to the direct product Tσ1 × Tσ2 . Therefore,
decomposing σ as the sum of its singular part σs and of its absolutely continuous part σa ,
we see that, since a Gaussian process with singular spectral measure has 0 entropy, Tσ is
isomorphic to a factor of the product of a zero entropy transformation by an infinite entropy
Bernoulli shift, and is itself of this form, as an application of general theorems. If in the
preceding construction, we consider the more general situation where the operator U on
H has no longer simple spectrum, we still obtain a transformation, which is no longer
described by a single Gaussian process, which we call generalized Gaussian. Generalized
Gaussian processes share many properties with ordinary Gaussian processes.
A version of the generalized Gaussian construction for more general groups provides a

general way to construct many spectrally (and hence metrically) non-isomorphic actions
by measure preserving transformations [4, Section 4.4]. For such groups as semisimple
Lie groups of rank ! 2 and lattices in such groups whose actions possess strong rigidity
properties which render many standard constructions trivial this is the only known way to
produce many non-isomorphic actions.

6.4.2. Spectral multiplicity for Gaussian systems. In order for UTσ to have simple spec-
trum it is necessary for all σ (n) to be pairwise singular.
On the other hand, the spectrum is simple if there is a set K such that (i) K ∪ −K has

full σ -measure, and (ii) all its elements are independent over the rationals, that is if

λ1, . . . ,λn ∈ K, and (m1, . . . ,mn) ∈ Zn \ {0}, then m1λ1 + · · · + mnλn 1= 0.
(6.1)

We use here additive coordinate on the circle S1 = R/Z. The first proof of existence of a
measure preserving transformation with a simple but not pure point spectrum was given
by Girsanov in [61] using the Gaussian system of this kind. A stronger condition which
implies (6.1) is the following:

(K) Every continuous function on the setK of modulus 1 is a uniform limit of characters.
A closed set satisfying condition (K) is called a Kronecker set. D. Newton [116] first used
Kronecker sets to construct Gaussian systems with simple spectrum. His examples were
Gaussian systems with spectral measures supported by the union of a Kronecker set K
and −K . Let us call such a measure Kronecker. Also using a construction of a mixing
measure suggested by Rudin [139] Newton found a mixing Gaussian transformation with
simple spectrum.

PROPOSITION 6.14. For Gaussian systems the multiplicity function is multiplicative al-
most everywhere with respect to a measure of the maximal spectral type.
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COROLLARY 6.15. Either the spectrum of a Gaussian transformation is simple or the
maximal spectral multiplicity is unbounded.

PROPOSITION 6.16. There exists σ such that Tσ has non-simple spectrum and for which
the multiplicity function is finite almost everywhere.

Corollary 6.15 and Proposition 6.16 explain why finding systems with non-simple spec-
trum of bounded multiplicity was considered an interesting problem when Gaussian sys-
tems and their modifications provided the only models with interesting spectral proper-
ties. After the initial success in the study of Gaussian systems there was a hope to orga-
nize a good part of ergodic theory around a generalized version of the Gaussian model
reflected in [147]. One of the original impulses which led to the development of the
theory or periodic approximations and similar geometric methods came from attempts
to understand how restrictive were the assumptions on which this approach was based.
The answer on the occasion was that they almost never held in natural geometric situa-
tions.

6.4.3. Spectrally defined isomorphism in Gaussian and similar systems. Foias and
Stratila in [54] showed that Newton’s examples have a remarkable property which makes
them similar to transformations with pure point spectrum, in fact like translations on
continuum-dimensional tori.

THEOREM 6.17. Let σ be a Kronecker measure. Then if (X,A,m,T ) is ergodic and if
f ∈ L2(X) satisfies νf = σ , the process T nf , n ∈ Z, is Gaussian.

One important consequence of this theorem is the following [150].

THEOREM 6.18. Let σ be a Kronecker measure and Tσ the associated Gaussian trans-
formation. All ergodic self-joinings of Tσ remain generalized Gaussian.

One can prove that the conclusion of this theorem holds for measures σ such that the
associated Gaussian Tσ has simple spectrum. Those processes such that all their ergodic
joinings remain generalized Gaussian are called GAG and are the subject of a compre-
hensive study in [107]. They can be thought of as a limit of a product of pairwise disjoint
simple transformations. Let us say that σ for which the conclusion of Theorem 6.17 holds
has the F.S.-property. There are examples in [107] where measures satisfying the F.S.-
property have as support S the union of two disjoint Kronecker sets without S itself being
Kronecker. An interesting question is the following:

PROBLEM 6.19. Does there exist a mixing measure which possesses the F.S.-property?

F. Parreau (unpublished) has produced a mildly mixing measure with the F.S.-property.
Notice that Kronecker systems are rigid. This is a direct consequence of the property of
Kronecker sets that every continuous function is a uniform limit of characters. The rigidity
is just this statement applied to the constant function 1. We are now going to show that, with
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the use of Gaussian processes, it is easy to produce two transformations which are weakly
isomorphic but not isomorphic. Given a Gaussian process Xσ

n to which we associate the
shift transformation Tσ (acting on (X,A,m)), if we let H be the L2-closure of the linear
span ofXσ

n , n ∈ Z, we have seen that every unitary operator U onH gives rise to a measure
preserving transformation τU (the one coming from the Gaussian processes associated to
U when H is decomposed into an orthogonal sum of U -cyclic subspaces). If we take

UX = −X,

the map τU is an involution which commutes with Tσ ; the σ -algebra B of τU -invariant sets
defines a factor (which we call T̂σ ) of Tσ and

L2(B) =
∑

n"0
H(2n).

Such a factor was first defined by Newton and Parry. We take σ such that σ is continuous
and σ (n) ⊥ σ (m), n 1= m. We define

T1 =
∏

k∈N
Tk,σ ,

where every Tk,σ , k ∈ N, is a copy of Tσ and

T2 = T̂σ × T1.

It is therefore obvious that T1 and T2 are weakly isomorphic.

THEOREM 6.20. T1 and T2 are weakly isomorphic but not isomorphic.

PROOF. In L2 of the space on which T1 lives, UT1 (the unitary operator associated to T1)
has spectral measure σ on

∑

k∈N
⊕Hk = H.

The spectral measure of UT1 onH
⊥ is singular with respect to σ (because of the hypothesis

on σ ). Again, because

σ (2n) ⊥ σ,

the spectral measure of UT2 on H
⊥
2 is singular with respect to σ . (H 2 is

∑
k∈N ⊕Hk in

the space on which T2 lives.) Therefore, if T1 and T2 are isomorphic then the associated
isometry must send H onto H 2, which is impossible. #
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Note that it is also very easy to construct weakly isomorphic but not isomorphic trans-
formations from a transformation which has MSJ (and therefore from Chacon transfor-
mations). This was done by D. Rudolph before the Gaussian example described above.
The first example of two weakly isomorphic but not isomorphic transformations is due
to S. Polit. Kwiatkowski, Lemańczyk and Rudolph [101] have constructed an example
of two smooth dynamical systems which are weakly isomorphic but not isomorphic. The
following result by De la Rue shows that Girsanov examples and more general transforma-
tions with simple spectrum coming from the Gaussian construction are quite different from
transformations with simple spectrum constructed by more geometric methods in earlier
parts of this survey.

THEOREM 6.21 [37]. A Gaussian transformation cannot be locally rank one.

Another result in a similar vein was proved by del Junco and Lemańczyk [31] who
extended an earlier result by Thouvenot [151].

THEOREM 6.22. Gaussian transformations are disjoint from simple transformations.

One more striking property of Kronecker Gaussian systems is the De la Rue result [36]
mentioned before that there are maximal spectral types which appear for zero entropy
ergodic transformations but not for standard ones (Kakutani equivalent to adding machines
and irrational rotations). This follows form the Foias–Stratila theorem and the following
fact proved by De la Rue.

THEOREM 6.23. There exists a Kronecker measure such that the corresponding Gaussian
transformation is not standard.

An interesting open problem tying together the themes of this section and Section 5.5 is
the following:

PROBLEM 6.24. Does there exist a volume preserving diffeomorphism of a compact dif-
ferentiable manifold which is measurably conjugate to a Gaussian system?
More specifically, given a non-trivial volume preserving smooth action S of S1 on a

compact differentiable manifold M , does there exist a diffeomorphism measurably con-
jugate to a Kronecker Gaussian system in the space A, the closure of conjugates of the
elements of S (see Section 5.5.2)?

Acknowledgements

We would like to thank the referee for a number of valuable suggestions and critical com-
ments and for extremely careful reading of the draft of the survey.
Anatole Katok is partially supported by NSF Grant DMS 0071339.



738 A. Katok and J.-P. Thouvenot

References

Surveys in volume 1A and this volume

[1] L. Barreira and Ya. Pesin, Smooth ergodic theory and non-uniformly hyperbolic dynamics, Handbook of
Dynamical Systems, Vol. 1B, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2006), 57–263.

[2] V. Bergelson, Combinatorial and Diophantine applications of ergodic theory, Handbook of Dynamical
Systems, Vol. 1B, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2006), 745–869.

[3] N. Chernov, Invariant measures for hyperbolic dynamical systems, Handbook of Dynamical Systems,
Vol. 1A, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2002), 321–407.

[4] R. Feres and A. Katok, Ergodic theory and dynamics of G-spaces, Handbook of Dynamical Systems,
Vol. 1A, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2002), 665–763.

[5] G. Forni, On the Lyapunov exponents of the Kontsvich–Zorich cocycle, Handbook of Dynamical Systems,
Vol. 1B, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2006), 549–580.

[6] E. Glasner and B. Weiss, On the interplay between measurable and topological dynamics, Handbook of
Dynamical Systems, Vol. 1B, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2006), 597–648.

[7] B. Hasselblatt, Hyperbolic dynamical systems, Handbook of Dynamical Systems, Vol. 1A, B. Hasselblatt
and A. Katok, eds, Elsevier, Amsterdam (2002), 239–319.

[8] B. Hasselblatt and A. Katok, Principal structures, Handbook of Dynamical Systems, Vol. 1A, B. Hassel-
blatt and A. Katok, eds, Elsevier, Amsterdam (2002), 1–203.

[9] B. Hasselblatt and Ya. Pesin, Partially hyperbolic dynamical systems, Handbook of Dynamical Systems,
Vol. 1B, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2006), 1–55.

[10] D. Kleinbock, N. Shah and A. Starkov, Dynamics of subgroup actions on homogeneous spaces of Lie
groups and applications to number theory, Handbook of Dynamical Systems, Vol. 1A, B. Hasselblatt and
A. Katok, eds, Elsevier, Amsterdam (2002), 813–930.

[11] H. Masur and S. Tabachnikov, Rational billiards and flat structures, Handbook of Dynamical Systems,
Vol. 1A, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2002), 1015–1089.

[12] J.-P. Thouvenot, Entropy, isomorphism and equivalence in ergodic theory, Handbook of Dynamical Sys-
tems, Vol. 1A, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2002), 205–238.

Other sources

[13] L.M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izvestia Akad. Nauk SSSR 26
(1962), 513–550; Amer. Math. Soc. Transl. 39 (1964), 37–56.

[14] T. Adams, Smorodinsky’s conjecture on rank one systems, Proc. Amer. Math. Soc. 126 (3) (1998), 739–
744.

[15] O.N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in their spectrum, Mat.
Sbornik 64 (1989), 305–317.

[16] O.N. Ageev, On ergodic transformations with homogeneous spectrum, J. Dynamical Control Systems 5
(1999), 149–152.

[17] O.N. Ageev, On a homogeneous spectrum in ergodic theory, Invent. Math. 160 (2005), 417–446.
[18] D.V. Anosov and A.B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans.

Moscow Math. Soc. 23 (1970), 1–35.
[19] H. Anzai, Ergodic skew product transformations on the torus, Osaka J. Math. 3 (1951), 83–99.
[20] A. Avila and G. Forni,Weak mixing for interval exchange transformations and translations flows, Preprint

(2004).
[21] P. Billingsley, Ergodic Theory and Information, Wiley Inc. (1966).
[22] M. Boshernitzan, A criterion for interval exchange maps to be uniquely ergodic, Duke Math. J. 52 (1985),

723–752.
[23] J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Etudes Sci. Publ. Math. 69 (1989),

5–45.



Spectral properties in ergodic theory 739

[24] J. Bourgain, On the spectral type of Ornstein’s class one transformation, Israel J. Math. 84 (1993), 53–63.
[25] J. Brezin and C.C. Moore, Flows on homogeneous spaces: A new look, Amer. J. Math. 103 (1981), 571–

613.
[26] R.V. Chacon, Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc. 22

(1969), 559–562.
[27] J.-P. Conze, Equations fonctionnelles et systemes induits en theorie ergodique, Z. Wahrsch. Verw. Gebiete

23 (1972), 75–82 (French).
[28] J.-P. Conze, Entropie d’un groupe abelien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11–30

(French).
[29] I.P. Cornfeld, Ya.G. Sinai and S.V. Fomin, Ergodic Theory, Grundlehren Math. Wiss., Vol. 245, Springer,

New York (1982).
[30] R. de la Llave, A tutorial in KAM theory, Smooth Ergodic Theory and its Applications, Proc. Sympos.

Pure Math., Vol. 69, Amer. Math. Soc. (2001), 175–293.
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[66] G.R. Goodson and M. Lemańczyk, Transformations conjugate to their inverses have even essential values,

Proc. Amer. Math. Soc. 124 (1996), 2703–2710.
[67] R. Gunesch and A. Katok, Construction of weakly mixing diffeomorphisms preserving measurable Rie-

mannian metric and smooth measure. With an appendix by Alex Furman, Discrete Contin. Dynam. Sys-
tems 6 (1) (2000), 61–88.

[68] P.R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Company, New York (1956).
[69] H. Helson and W. Parry, Cocycles and spectra, Ark. Mat. 16 (1978), 195–206.
[70] M. Herman, On the dynamics of Lagrangian tori invariant by symplectic diffeomorphisms, Progress in

Variational Methods in Hamiltonian Systems and Elliptic Equations (L’Aquila, 1990), Pitman Res. Notes
Math. Ser., Vol. 243, Longman Sci. Tech., Harlow (1992), 92–112.

[71] C. Hoffman, A K counterexample machine, Trans. Amer. Math. Soc. 351 (10) (1999), 4263–4280.
[72] B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum, Israel

J. Math. 76 (1991), 289–298.
[73] S. Kalikow, Two fold mixing implies three fold mixing for rank one transformations, Ergodic Theory

Dynamical Systems 4 (1984), 237–259.
[74] T. Kamae, Spectral properties of automata generating sequences, unpublished.
[75] A. Katok, Monotone equivalence in ergodic theory, Math. USSR-Izv. 10 (1977), 99–146.
[76] A. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math. 35

(1980), 301–310.
[77] A. Katok, Smooth non-Bernoulli K-automorphisms, Invent. Math. 61 (1980), 291–300.
[78] A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series,

Vol. 30, Amer. Math. Soc. (2003).
[79] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Uni-

versity Press (1995).
[80] A.B. Katok and E.A. Sataev, Standardness of automorphisms of transpositions of intervals and fluxes on

surfaces, Math. Notes Acad. Sci. USSR 20 (1977), 826–831.
[81] A.B. Katok and A.M. Stepin, Approximations in ergodic theory, Russian Math. Surveys 22 (1967), 77–

102.
[82] A.B. Katok and A.M. Stepin, Metric properties of measure preserving homeomorphisms, Russian Math.

Surveys 25 (1970), 191–220.



Spectral properties in ergodic theory 741

[83] A. Katok and J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure
preserving transformations, Ann. Inst. H. Poincaré Probab. Statist. 33 (3) (1997), 323–338.

[84] Y. Katznelson and B. Weiss, Commuting measure preserving transformations, Israel J. Math. 12 (1972),
16–23.

[85] M. Keane, Interval exchange transformations, Math. Z. 141 (1975), 25–31.
[86] A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Math., Vol. 156, Springer, New York

(1995).
[87] K.M. Khanin and Ya.G. Sinai, Mixing of some classes of special flows over rotations of the circle, Funct.

Anal. Appl. 26 (3) (1992), 155–169.
[88] J. King, Joining rank and the structure of finite rank mixing transformations, J. Anal. Math. 51 (1988),

182–227.
[89] I. Klemes, The spectral type of the staircase transformation, Tohôku Math. J. 48 (1996), 247–248.
[90] A.V. Kočergin, Change of time in flows, and mixing, Math. USSR-Izv. 7 (1973), 1273–1294.
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