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Abstract. We study asymptotic growth of closed geodesies for various Riemannian
metrics on a compact manifold which carries a metric of negative sectional curvature.
Our approach makes use of both variational and dynamical description of geodesies
and can be described as an asymptotic version of length-area method. We also
obtain various inequalities between topological and measure-theoretic entropies
of the geodesic flows for different metrics on the same manifold. Our method works
especially well for any metric conformally equivalent to a metric of constant negative
curvature. For a surface with negative Euler characteristics every Riemannian
metric has this property due to a classical regularization theorem. This allows us
to prove that every metric of non-constant curvature has strictly more close
geodesies of length at most T for sufficiently large T then any metric of constant
curvature of the same total area. In addition the common value of topological and
measure-theoretic entropies for metrics of constant negative curvature with the
fixed area separates the values of two entropies for other metrics with the same area.

1. Introduction

1(A). Notations. Throughout this paper M will always denote a smooth, compact
connected manifold without boundary.

Let a be a Riemannian metric on M (normally of class C2, unless the opposite
is stated). The metric a generates a volume element on M (Riemannian volume
form). We will use the following standard notations for various objects associated
wither:

da - the distance function generated by a;
va - the total volume (area if dim M = 2) of M;
ft,, - normalized Riemannian measure on M which assigns to every set its volume

divided by va;
l<r{a)- the length of a curve a in the metric generated by o~;
S^M- the unit tangent bundle over M, i.e. the manifold of all tangent vectors

to M of length one; there is a canonical way to define a Riemannian metric on S"A/;
Da- the distance in SaM generated by this metric;
Â  - the normalized Riemannian measure on S"M; it is sometimes called the

Liouville measure;
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ir^: S"M -> M - the standard projection. It is easy to see that (7ro.)*Ao. = \x.a\
4>a = {<pT}tea - the geodesic flow generated by the metric a, i.e. a one-parameter

group of diffeomorphisms of S"M determined by the motion of tangent vectors
with unit speed along geodesies determined by them.

The flow <£CT preserves the measure ACT. Our standard assumption guarantees that
^ is a C1 flow;

ha- the topological entropy of the geodesic flow <£f;
ho = hv{<i>") - the metric entropy of 4>" with respect to an invariant measure v.

For brevity we will write hx
a instead of hxj.

If it does not lead to a confusion we will not make any distinction between a
geodesic (finite or infinite) as a curve in M parametrized by length and its lifting
to the unit tangent bundle which is an orbit of the geodesic flow. We will call both
objects geodesies and will normally use the symbol y with various indices to denote
them.

By a closed geodesic we will normally mean a simple periodic orbit of the geodesic
flow. Thus, every simple closed geodesic, as it is usually defined in differential
geometry, determines two closed geodesies in our sense: one for each orientation.

Let us introduce a few more notations.
II(A/) - the set of all non-zero free homotopy classes of closed curves on M;
For Te Il(Af) we denote

0>UT) - the set of all closed geodesies of length <T;

PUT) = Card &UT) - the number of closed geodesies of length
less than or equal to T; (1.1)

PUT) - the number of T e II such that LUT) =£ T;

P ^ j i n L ( l o g / U D / r ) ; PI = Um_ (log PUT)/T). (1.2)

Let au a-2 be two Riemannian metrics on M and v e S^M then \\v\\a2 is the norm
of v with respect to a^,

1(B). Main results. We begin in § 2 with the proof of the following basic theorem.

THEOREM A. Let <rx be a Riemannian metric of negative curvature. Then for every
Riemannian metric er2 on the same manifold

Then we prove a weaker inequality with /iCT2 instead of Ps
az under a weaker

assumption that o-\ is a metric without focal points. We finish the section with a
lengthy discussion of the nature of the extra multiples involved in the inequalities
which allows us to sharpen the inequalities under some additional assumptions.
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In § 3 the results of the previous section are applied to the two-dimensional case
producing the main result of this paper.

THEOREM B. For every Riemannian metric a on a compact surface with negative
Euler characteristic E

and the last inequality is strict for every metric of non-constant curvature.
If o- is a metric without focal points then

and this inequality is strict unless a is a metric of constant negative curvature.

Then we show how these inequalities can be. sharpened according to various
geometric characteristics of a. In § 4 we consider several refinements of theorem B.

1(C). Background. In order to simplify the references in the course of proofs and
at the same time give the reader an idea of our approach we list here the principal
facts used in the proofs of theorems A and B. Some of these facts are classical,
others are fairly recent and relatively less known.

1.1. Every free homotopy class reIl(A/) contains a shortest curve and every such
curve is a closed geodesic (cf. e.g. [5, § 11.7]).

1.2. For a metric of negative {sectional) curvature on a compact manifold, a closed
geodesic in every non-trivial free homotopy class is unique.

1.3. Anosov closing lemma [1]. If a is a metric of negative curvature, then for every
e > 0 there exists 8=8{e,<r)>0 such that if for v e S°M, t > 0

then there exists a closed geodesic yv ={(t>°w}'s=0 of period t', where \t-t'\<e, such
that

forO<s<f.

1.4. For a metric of negative curvature, the limit of (log PAT))/Texists and is equal
to ha [6,19, 20].

1.5. Pl^K.

Since P"a is less or equal than the speed of exponential growth of balls on the
universal covering (see 2.6, below), this inequality follows from Manning [17]. It
is implicit already in Dinaburg [8].

The next proposition gives a characterization of the metric entropy for an ergodic
flow through the growth of distinguishable typical orbits, which is an exact analogue
and an easy corollary of the characterization given in [13, theorem 1.1] for discrete-
time dynamical systems.
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Let X be a compact metric space with distance function d, / = {/,},eR is a
continuous flow on X, i.e. one-parameter group of homeomorphisms of X, (j. is a
Borel probability measure on X invariant and ergodic with respect to /. Let us
define for every T > 0 a metric df

T by

df
T(x, y) = maxTd(fTx,fTy). (1.3)

(Obviously, the metric D J defined above coincides with df
T for the geodesic flow

<t>a if Da serves as d.) Furthermore, let, for T>0, e >0, 0<8 < 1, AT?(7, e, 8) be
the minimal number of e-balls in the metric df

T which covers a set of measure
>1 - 6 . For the geodesic flow <f>a we will write N^(T, e, 8) instead of N+i(T, e, 8).

1.6. PROPOSITION. For every 8, 0 < 8 < 1

logN?(T1e18)
—-—hu. (/) = lim lim —2—*— = hm hm

Proof. Obviously for every t > 0

f f d e f

d'T(x, y)^d{Tm(x, y) = max d(fktx,fkty).0</ts[T/l]

On the other hand, by the uniform continuity of the flow, one can find for every
e >0, t > 0 an a = ei(e, 0 > 0 such that d(x, y)<ei implies that d{fTx,fTy)<e for
0 s T < f. This means that any e-ball in df

T metric contains an e i-ball in d[TM metric
for any 0<r<f . Let, as in [13], Nft(n,e,8) be the minimal number of e-balls in
<i{'-metric covering a set of measure s i —8. We have from the above arguments

[j\ ) ^[j] ) (1.4)
It is well-known that

MAH'lM/)- (1-5)
Let us choose f >0 such that /, is ergodic so that we can apply theorem 1.1 from
[13] to /,. Now the proposition follows immediately from (1.4) and (1.5). D

1.7. Any Riemannian metric cr on a compact surface with negative Euler characteris-
tic can be represented in a unique way as pcro where p is a positive scalar function
and (To is a metric of constant negative curvature such that vao = va.

This follows from the classical regularization theorem by Koebe (cf. e.g. [27]).

1.8. For any C2+s(8 > 0) Riemannian metric a on a compact surface

This follows from the continuous-time version of theorem 4.3 from [13]. We
postpone a more detailed explanation till § 4 where we will discuss a more refined
version and generalizations of that result.
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1(D). Historical remarks. Geodesies on a Riemannian manifold can be studied from
two different viewpoints, variational and dynamical. In differential geometry the
first approach prevails, so that the geodesies are usually treated as shortest (locally
or globally) elements in various classes of curves on the manifold. Variational
method in the study of closed geodesies goes back to D. Hilbert and G. D. Birkhoff.
The book of M. Morse [21] is a classical example of variational approach.

Morse was also the first to consider the asymptotic behaviour of geodesies for
various metrics on the same manifold [22]. More specifically he showed that certain
features of the picture corresponding to a metric of constant negative curvature
remain for an arbitrary metric on a surface of negative Euler characteristic.

The length-area method known for a long time in complex analysis (see e.g.
[12]) was first used in the problem of closed geodesies by Loewner (see Berger's
lectures [2]).

From the dynamical point of view the geodesies are considered as orbits of the
geodesic flow and the geometric characteristics of the metric are reflected in
asymptotic properties of this flow; e.g. the negativity of the curvature leads to
exponential divergence of the orbits [1].

Geodesic flows served as a standard proving ground for the modern global theory
of smooth dynamical systems since its origin in works of H. Poincare [24] and
G. D. Birkhoff [4]. During the twenties and the thirties, geodesic flows especially
on manifolds of negative curvature were studied by E. Artin, M. Morse, E. Hopf,
G. A. Hedlund and others (cf. the survey of Hedlund [10] which summarizes most
of the achievements of that period). These authors were mostly concerned with
qualitative questions like the existence of closed geodesies, ergodicity, density of
closed geodesies, etc.

Selberg [28] found the asymptotic growth rate for the number of closed geodesies
on a manifold of constant negative curvature, based on his celebrated trace formula.

In the early sixties important progress was made following the introduction of
new fundamental dynamical concepts - Anosov systems [1], measure-theoretic
entropy (Kolmogorov-Sinai), and topological entropy (Adler-Konheim-McAn-
drew). Sinai [29] proved that for a Riemannian metric on an ra-dimensional manifold
with negative sectional curvature bounded between -K.\ and -K\ (K\ <K2)

Dinaburg [8] and Manning [17] found important connections between the topo-
logical entropy and the growth of closed geodesies. Margulis ([19, 20], cf. also [6])
proved that for a metric of negative curvature P«{T) is multiplicatively equivalent
to (C exp/io-jO/r for a certain constant C > 0 . Recently C. Toll (unpublished)
showed that C = h ~a

x.

1(E). I was working on this paper for almost two years. It was started during my
visit to the Mathematics Institute of the University of Warwick in May-June
1979. I would like to thank the Institute, and to thank personally the organizer
of the symposium of Diffeomorphisms and Foliations, D. Epstein, for their warm
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hospitality. Conversations with D. Epstein, A. Manning and A. Douady were
extremely useful and stimulating for the early stages of my work.

Substantial progress was reached during my short visit to SFB Theoretische
Mathematik' of the University of Bonn in June 1980. I would like to express my
gratitude for this invitation. Discussion with differential geometers there, especially
with H. Karcher, contributed substantially to this paper.

I have discussed various aspects of this paper with my colleagues and visitors at
the University of Maryland. I am thankful to V. Ballmann, M. Berger, M. Brin,
A. Gray, H. Gluck, B. Reinhart, R. Spatzier, S. Wolpert, and W. Ziller for their help.

Some of the results included in this paper are announced in the preprints of my
talks at the 'Mathematische Arbeitstagung 1980' [14] and at the conference on
Ergodic Theory in Durham, England, [15].

2. Comparison theorems

2(A). THEOREM 2.1. Let o-\bea metric of negative curvature, on a compact manifold
M, v be a Borel probability measure invariant with respect to the geodesic flow ip"1,
o-2 be another Riemannian metric on M and va2 = JS<M ||r||<T2rfi'. Then

Pa2>KJva2.
Proof. First, let us notice that it is enough to prove the inequality only for an ergodic
measure v. For, otherwise v can be decomposed into ergodic components. Both
the entropy Wai and the integral va2 are the integrals of the corresponding quantities
for ergodic measures. Since for any positive function g and non-negative function
/ on any measure space

J / ^ ^ sup (f/g) (2.1)

we see that the statement of the theorem holds for arbitrary v if it holds for ergodic
measures.

Let us denote for T > 0, e > 0

^ J U^v\l2dt-V<T2 <ej. (2.2)

Be,T={veScr>M:3t, T<t<

Since the geodesic flow is ergodic with respect to v then for any e > 0

v(AE,T)->l as r->oo. (2.3)

Let us show that also for each e > 0

v(B.,T)->l asT^-oo. (2.4)

For, let $ be a finite partition of S"1M into measurable sets of diameter less than
e. Let c €£. Since by the ergodicity of 4>"x for almost every o e c w e have

1 fT
h m r J 0

 Xc(<f>t
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is the characteristic function of the set c) then for sufficiently big T
fT ,U+e)T

Jo Jo

so that <p°lv e c for some t'\ t < t' < (1 + e )t. Applying this argument to every c we
obtain (2.4).

Thus by (2.3) and (2.4) we can find T such that for every t > T

v(A..tnBsi.m)j)>2 (2.5)

where S(e, <TI) comes from 1.3.
Let A,,£ be a maximal (t, 3e)-separated subset of the set AEyt nB«(s,ffl),, = A. The

balls of radius 3e about the points of the set A,,e cover the set A (otherwise A,,e is
not maximal). Thus, we have by (2.5)

Card Au a A W . 3e, /i(A))aAV,(r, 3e, \). (2.6)

Applying Anosov's closing lemma 1.3, we construct for every DeA,,E a closed
geodesic yv. Since by this lemma yv contains an element w = w (v) such that
D'ai(v, w(v))<e we have for V\

>3e — e —e = e.

Thus, if the same closed geodesic appears as yVl and yU2 the points w(vi) and w(v2)
lie more than e apart. Since the maximal number of such points on a geodesic does
not exceed its length divided over e we see that the total number of different
geodesies appearing as yv for different v e A,,e is greater than

e-CardA,,e e ,
t(i+e) ^^(TTT)^''3^- (2-7)

Since o-\ has negative curvature, all these geodesies belong to different free
homotopy classes (see 1.2).

We want to estimate from above the cr2-length of the geodesic yv. The number
t'<(l + e)t is a period of this geodesic (probably not the minimal period) so that
we have for some natural number n

[
= f U7iw(v)\\nds+ f IK'wdO

Jo Jf

<f ||^fi;||dj
Jo

(2.8)

where K does not depend on t and e.
We have used the fact that t; eAe,t and also that

forallO<s<f.
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Let FeFl(Af) be the free homotopy class containing yv. By 1.1 there exists the
shortest curve with respect to <r2 curve a e F which is a closed geodesic for a2-

By (2.8) we have

Taking into account the estimate from below for the number of different y,,'s given
by (2.7) we have

E i

so that

where t' = t(v^ + eK)~1. Since f'-»oo as f->oo, we have

Pl2 s i ^ + eKT1 lim (logN^it, 3e, \)/t),

and the theorem follows now from proposition 1.6. •
Theorem A follows immediately from theorem 2.1.
Theorem 2.1 and 1.5 imply the following statement.

2.2. COROLLARY. Under the assumptions of 2.1,

Let us consider now a particular case when the Liouville measure is the measure
of maximal entropy for the metric a\. We have from theorem A and 1.4,

2.3. COROLLARY. Let cry be a metric of negative curvature and hK
ai — hax. Then for

every metric CT-L on the same manifold

All known examples of metrics of negative curvature for which the Liouville measure
has maximal entropy are of the form G/Y where G is a symmetric space of
non-compact type with real rank one and F is a discrete group of isometries acting
freely on G. In this case the group of isometries acts transitively on the unit tangent
bundle of the universal covering space G (cf. e.g. [11, chapter 6, theorem 6.2]).
This means in particular that the Lyapunov characteristic exponents are the same
for all unit tangent vectors. Let us denote the positive exponents by \\, • • •, Xn-i
(each exponent is counted with its multiplicity).

By Pesin's entropy formula [23]

and by the above entropy estimate [25] and the variational principle ([7, § 18])

r n — l

J i = l
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In the symmetric space case the entropy depends only on the universal covering
space G and not on the fundamental group Y. I am grateful to R. Spatzier who
helped me to make computations.

The following list is obtained with the use of the table on pp. 532-534 of [11].

Symmetric space

Real hyperbolic n-space
(constant negative curvature)

Complex hyperbolic n-space
Quaternionic hyperbolic

n-space
Hyperbolic plane over

Cayley numbers

Dimension

n

In
An

16

Maximal
sectional curvature

-K2

-K2

—K2

-K2

Entropy

(n-l)K

2nK
(4n+2)K

22K

It looks like a reasonable conjecture that those are the only cases of manifolds
of negative curvature for which the Liouville measure has maximal entropy.

2(B). Let us assume now that the metrics o-\ and a2 are conformally equivalent,
i.e. o
that
i.e. o-2 = p<Ti where p is a positive scalar function. In this case HuĤ  = (p{iraiv)y so

p '<W (2.10)

Let dim M = n. For two conformally equivalent metrics one has

so that

Henceforth, by the Jensen inequality one has

f pk d^^(vjv^)l/n (2.11)
JM

and this inequality is strict unless p = const.
Combining theorem A, 1.5, (2.10) and (2.11) we obtain

2.4. COROLLARY. Letcri be a Riemannian metric of negative curvature on a compact

connected n-dimensional manifold M and a2 = pa-\. Then

h^ a (vjv^)ltnhk
ai

and the last inequality is strict unless p = const.



348 A. Katok

2.5. COROLLARY. / / in addition h^l = h^ri then among all metrics of fixed total
volume conformally equivalent to the metric a, the quantities Pm P^ and ha reach
the strict minimum at the metric proportional to av, if we consider only C2+s (S > 0)
metrics of fixed volume and of negative curvature conformally equivalent to <j\ then
the entropy hx

a reaches the strict maximum at the same metric.

2(C). We will show in this subsection that the inequality between the entropies
given by corollary 2.2 remains true under somewhat weaker assumptions about
the 'model' metric o-\ than the negativity of the curvature.

Let M be the universal covering of the manifold M, ir:M->M the covering
map, & the natural lift of the Riemannian metric a on M to M. Some of the objects
associated with a such as dm ir^, Da etc. can also be lifted. Naturally, we will use
the symbols like ds, v^, D& to denote those liftings.

Let for x e M , T > 0 , Va(x, T) denote the volume of the ball of radius T about
x in the metric &. A. Manning [17] proved the following.

2.6. For every x e M
/i^Hmaogv^Ot.ryr).

(The limit exists and is independent of x.)

2.7. THEOREM. Letai be a Riemannian metric on M such that for every e > 0 there
exists K = K (e) > 0 such that if yuy2 are two geodesies on M of the same length r and

^,(ri(0), T2(0)) < K, d&l(yi(r), y2(r)) < K

then

dz1(yi(t),y2(t))<e for every f.O^t^r.

Then for every metric cr2 on M and every (fr*1-invariant measure v

Proof. The method is quite similar to the one used for the proof of theorem 2.1.
First, the same argument based on (2.1) shows that it is enough to consider only
ergodic measures v. In that case we have by (2.3) for any fixed e > 0 and any
sufficiently large t

A.1(AM)>i (2.12)

where the set A M is defined in (2.2).
Let for S > 0, A,,s be a maximal (t, 5)-separated subset of AeI. Similarly to (2.6) we

have

Card A,,8>iVrift S, ̂ (A^^N^^t, S, \). (2.13)

Let us fix a compact fundamental region Mo^zM for the projection -fr and
consider for every v e A(>s the following geodesic for the metric &\

yv:[-l,t + l]^M

where yv{s) = vjrff^v, and v e TaxM is chosen in such a way that

TTV=V and yp(- l ) = 7r<?1<^̂ 1
1i; eM0.
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Since the lifting may only increase the distances on the unit tangent bundle (as
well as on the manifold itself) we have for any vu v2e A,,5

max
Ossfl

and since any two geodesies which are C°-close and are not very short must be
enclose we have

Therefore, by the assumption of the theorem either

<fe,(yoi(-l), y»2(-D)>K(«i) = «2 (2.14)
or

d*2(yVl(t + D,yv2(t + l))>82. (2.15)

Let us consider a subset Mi <=• Mo of diameter 82/2 which contains the maximal
number of points of the form yu(-l) for v e A,,5. Let us denote

For every vi, v2 e A' inequality (2.15) holds. On the other hand, by the maximality
of Mi there exists a positive number C\ which depends on 5 but not on t such that

Card A' > d • Card A,,«. (2.16)

Let us estimate the distance between the ends of the curve yv in the metric cr2.
Let us denote for the sake of brevity

max \\v\L =&+, min \\v\L =&~. (2.17)

r'+1

=
J - l

We have for v € A,,s

f V<T2. (2 .18)
o

The last inequality follows from the definition of the set Ae-t (cf. (2.2)). Thus, all
the points yv(t +1), v e A' belong to the ball in the metric <f2 about any point x eM0

of radius
f' = diam<?2A/o + 2i?+ + t(l + e)vav (2.19)

By (2.15) for vu u2e A' we have

Thus, the above mentioned ball contains Card A' points which lay at the fixed
distance apart from each other. This means that there exists a constant C2 > 0 such
that

Furthermore, by (2.16) and (2.13)

V*2(x, t') > CiC2 Card A,,s 2 d C ^ f i i 5, £). (2.20)
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To complete the proof we use (2.19), (2.20), 2.6 and 1.6. Namely,

log Vs^x, t') I log N^2(t,SA)
t' ~T^,t' t

• lim

where by 1.6 a(8)-*0 as <5-»0. Since e >0 may be chosen arbitrarily small the
theorem is proved. •

The assumption of theorem 2.7 is satisfied for a metric without focal points due
to the following fact.

2.8. PROPOSITION. Let a be a Riemannian metric on M without focal points, y\,
72- [0, T ] - * M be two geodesies of the same length T on the universal covering M
parametrized by length. Then for every t: 0<tSr

, y2(0))+dAyi(r), y2(r)).

Proof. For any metric without focal points the distance between corresponding
points on the geodesic rays issuing from any given point is increasing. Let y' be
the geodesic connecting the points yi(0) and ^ ( T ) and let la(y') = p. By the
above-mentioned property and the triangle inequality one has (cf. figure 1).

•

FIGURE 1

Theorem 2.7 and proposition 2.8 immediately imply the following

2.9. COROLLARY. If ai is a metric without focal points then for every metric a2 on
the same manifold and every <̂ <T' -invariant measure v

In particular ^ ^ [ a v , cr^1/!^,.

2.10. Remark. It follows easily from proposition 2.8 that for every metric a without
focal points

^=lim (VAx,T)/T)
T-»oo

for every x&M.
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2(D). The proof of theorem 2.7 involves an estimate of <?2-distance between two
ends of a 'typical' long & ̂ geodesic on M, (cf. (2.18)). This estimate which depends
only on ergodicity of the geodesic flow (here and later in this section we will simply
refer to 'ergodicity' meaning the ergodicity with respect to Liouville measure) is
interesting in itself; it can be reformulated in terms of an individual (but still typical)
geodesic.

Namely, let for v e S^M, t > 0

where v is an arbitrary lift of v into S^M.
Obviously,

. j

^ ( t . ^ U ( » . O = U^(v)\\^ds (2.21)
Jo

so that we have from the Birkhoff ergodic theorem:

2.11. If the geodesic flow <^tr' is ergodic, then for almost every v e S^M

lim (daim(
t~*oo

(As in the case of ergodicity 'almost every' means 'except for a set of measure zero
with respect to Liouville measure'; this notion, indeed, is determined by the smooth
structure on SaM.) This inequality can be refined in several ways which in turn
allows us to obtain stronger versions of the statement of theorem 2.7.

Let 2 c S^M be a transversal section for the geodesic flow^'1, <f>^ the Poincare
map induced by the geodesic flow on 2, A*, the <£*, -invariant measure on 2 induced
by the Liouville measure A,,, and for w e 2 let t^.(w) be the return time so that

Furthermore, let
dl,,^ (w) = dd2(irw, 7r^Mw)

be the a2 distance between two successive intersections of the 5\ geodesic with the
lifts of 2 (here, as before w is an arbitrary lifting of w) and

be the <?2 length of the <?i-geodesic connecting those intersections. Clearly

dl^iw^ll^iw) (2.22)

and the equality in (2.22) means that cr^geodesic {^wK^o' is also a cr2-geodesic.
Since we assume that the geodesic flow <f>"1 is ergodic, almost every o^-geodesic

intersects the section 2 infinitely many times; we will consider only such geodesies.
The distance daim(v, t) does not exceed the sum of the distances between

successive intersections of the orbit {^T'u} with the lift of 2, from the last intersection
for negative s to the first one for s > t. For almost every v the asymptotic behaviour



352 A.Katok

of this sum is given by the Birkhoff ergodic theorem. Namely, we have

2.12. If (f)^ is ergodic then for almost every v

. , „ f dl^{w)dkll{w)
daxm{fi, t) h def

lim — - < - = Ds
<^L^(v, t) lli<T2{w)dxliiw)

whereby (2.22) D 2 < 1 .

Taking into account the definition of laim{v, t) (cf. (2.21)) and using the Birkhoff
theorem once more, we have

2.13. For almost every v
7v— dvim(v, t) r ,
hm — ^ < D £ • [ai, o-2l
t < x > I
t-*<x>

In the proof of theorem 2.7 instead of the set Ae>, one can start from the set of
v e S"lM for which

[a 1; o-2] + e)

and proceed in the same way. This leads to the following refinement of theorem 2.7.

2.14. Under the assumptions of theorem 2.7

where 1 is an arbitrary section of the geodesic flow <£°\

2.15. PROPOSITION. / / there is at least one ai-geodesic which is not a a-2-geodesic
then for almost every v

(Here geodesies are considered as curves on M without parametrization.)

Proof. Let {<t>71v}'t<L0 be a sufficiently short orbit of 0°^ whose projection on M is
not a o-2-geodesic. Let 1 be a section for 4>"x consisting of two small hypersurfaces
in S^M near the vectors v and (frfjv. Then

.~M (2-23)

and by the continuity of the functions d^ltO.2 and /^1>(r2 at v this inequality holds in
a neighbourhood of v. This together with (2.22) imply that £>£< 1. •

We obtain immediately from 2.14 and 2.15

2.16. COROLLARY. If the assumptions of 2.7 and 2.15 are satisfied then

2.17. Remark. It is not difficult to show that for conformally equivalent metrics
the assumption of 2.15 is always satisfied unless the metrics are proportional.
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2.18. PROPOSITION. Let us assume that cr2 is a metric of negative curvature. Let 1n

be an arbitrary sequence of sections for 4>"x such that minv^xntsn(v)-*°o as n -*<x>.
Then, for almost every v e S'TxM

•>, t)
lim

v, t)
= lim

Proof. The &2 geodesic connecting any two points on M is unique and by Morse's
lemma [22] stays within a bounded distance r = r(au cr2) from the <?i-geodesic
connecting the same points. Let us fix v e 5CT*M and t > 0, take any lift v of v,
denote by -yi the <?i-geodesic of length t starting at v and by y2 the <?2-geodesic
connecting the ends of yi (see figure 2).

FIGURE 2

Let 2 be a section for the geodesic flow <£"' and v\,..., Vk(t) be the successive
points of intersection (in S^M) of yi with the lifts of S. Furthermore, let x, be the
orthogonal projection of the point TTU, to y2. We mean here projection with respect
to &2\ such a projection exists and is unique because a2 is a metric of negative
curvature. We have by the triangle inequality

ijrvi, TTVI+I)-2r = dlu^ -2r.

7 i

FIGURE 3

Let y' be the d2 geodesic connecting the points TCV{ and
have (see (2.17)):

vt+i (cf. figure 3). We
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so that

Thus, we have for i = 1 , . . . , k(t)-1

j i f

If min /x is big enough this implies in particular that the points xiy..., xkm lie on
y2 in the same order as TTV\, ..., nVk(t) on ylt so that

d*2{xi,xkw) Zfl'j"1 d&^xt, xi+1) ^ if" • min tx-2r
^ 5 )

Now we can proceed to the ratio in question. We have

d^,gj,v, t) _ d&2{xu xkU)) + <k (OT,

where y\ is a segment of yi between ut and uk(r). By the BirkhofI ergodic theorem
for almost every v e S^'M as t -* oo the time before the first intersection of yi with
2 and after the last such intersection becomes negligible in comparison with t. This
easily implies that the third multiple in (2.25) tends to 1 for such v and also that
the first multiple becomes close to the expression at the right-hand side of (2.24).
The second multiple goes to D% for almost every v.

Thus, we obtain from 2.12 and (2.25)

LJ t)& min rs T^S lVl^2{v, t) <-» Lt,aJ,v, t)

Since SE~ and r do not depend on 2, u, t the proposition follows from (2.26). •

3. Two-dimensional case

3(A). Let now M be a compact surface with negative Euler characteristic. By 1.7
we can associate with any given Riemannian metric a a metric of constant negative
curvature <T0 and the number

d
p.,

def I"

= [o-;<r0]=

We will show soon that this number may serve as a measure of deviation of a from
the metrics of constant negative curvature.

Let us also remark that in the two-dimensional case, for any two conformally
equivalent metrics o~\ and a2 = po-\ of the same total area one has

[fi;o-2]= pidii<ri=\ p'^pdfi^^l (p~x)4 dn«2
JM JM JM

= [O-2,<T,1 (3.1)
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The Gauss-Bonnet formula says that the curvature -K2 for a metric of constant
negative curvature is determined by the Euler characteristic E and the total area
v, namely

Henceforth by 1.2, 1.4 and the computation of the entropy in constant negative
curvature case, we have for every such metric a0

Plo=Pa0 = hao = hio=K(jE,v) = {^^-y. (3.2)

The following theorem is an immediate consequence of corollary 2.3, (3.1), (3.2)
and 1.8.

3.1. THEOREM. For every Riemannian metric a on a compact surface of negative
Euler characteristic E

and the last inequality is strict unless a is a metric of constant negative curvature.

3.2. THEOREM. For a metric a without focal points
I /_O_Z7\ '/-2

\ v

-2nEV

and both inequalities are strict for every metric with non-constant curvature.

Proof. By 1.7 we can find a metric a0 of constant negative curvature such that
ao = p~1<T. By theorem 2.7 and (3.1)

!

If cr is not a metric of constant negative curvature then p is not a constant.
Consequently pa < 1 and by corollary 2.16 and remark 2.17, ht >pjicro. •

Theorem B follows immediately from theorems 3.1 and 3.2.

3.3. COROLLARY. If for a metric a without focal points on a surface with negative
Euler characteristic

ha = ha

then a is a metric of constant negative curvature.

There is a good chance that the assertion of theorem 3.2 is true for a wider class
of Riemannian metrics without conjugate points. On the other hand, it is at least
highly probable that for general Riemannian metrics of fixed total area the entropy
with respect to LiouviUe measure may be arbitrarily large (although at the present
time no example is known of a metric with conjugate points and positive h^). Thus,
the metrics of constant negative curvature occupy a minimax position among all
metric without focal points of fixed total volume v; the number K(E, v), which is
the common value of the topological entropy and the entropy with respect to the
LiouviUe measure for metrics of constant negative curvature, separates the values
of the two entropies for all other metrics.
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3(B). Theorems 3.1 and 3.2 also support the idea that pa is a good measure of
deviation of a from the metrics of constant negative curvature. It is an interesting
problem to estimate this number through different geometric characteristics of the
metric.

As an example of such a result which makes use of theorem 3.2 we present an
estimate of pa through the volume and injectivity radius

Ra = min sup {r: expx is regular and invertible on r-ball around the origin in TXM).

In particular, if da{x, y)<Ra then the shortest geodesic connecting x and y is
unique.

3.4. THEOREM. For any Riemannian metric a on a compact surface with negative
Euler characteristic

* R., I v'J2 , 1-aX"1

l l l )
(

sup I
0<a<l \

« Ka 4

//, moreover, the curvature of o- is greater than or equal to A then

P<r> sup (-7r£'/2)'ai?(,(log(77-sinA5|Ah-log(l-a)|A|V8)"1.
0<a<l

Let for a given metric a, x s M and r>0, Br(x) be the ball of radius r about x,
Vr(x) be the volume of this ball and if r<RtT let Lr(x) be the circle of radius r
around JC i.e.

Lr(x) = {yeM:dAy,x) = r} and lr{x) = L{Lr{x)).

3.5. LEMMA, (cf. [3]). If M is a compact surface different from the sphere then for
any x eM, r^R^

Vr(x)>r2.
Proof. Since for r < Rv

Vr(x)=\ ls(x)ds
Jo

it is enough to prove that for r<Ra

lr(x)>2r. (3.3)

Let y eLr(x). We will prove that

max da(y,z)>r. (3.4)
zsLr(x)

Inequality (3.3) follows from (3.4) because L,{x) = dBr(x) is diffeomorphic to a circle
and this circle consists of two arcs connecting points y, z such that da{y,z)>r.
Consequently the length of each arc is greater than r.

Suppose that (3.4) is false, i.e.
Lr(jc)cBr(y). (3.5)

On the other hand, x e 8Br(y) = Lr{y) so that arbitrarily close to x one can find a
point w eM\Br(y). Since Br(y) is diffeomorphic to a disk the complement M\Br(y)
is connected and by (3.5)

M\Br{y)<=Br(x). (3.6)
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Since d(M\Br(y)) = dBr(y) = Lr(y) is a topological circle then by (3.6) M\Br{y) is
homeomorphic to a disk and M is homeomorphic to a sphere being a union of two
disks, Br(x) and M\Br(y), with common boundary. •

Remark. For the sphere the statement of the lemma is still true if r<RJ2.
In this case inclusion (3.6) is impossible because Br(x)<^B2r(y)czBR<r(y) and

3.6. PROPOSITION. Let 0<a < 1. Then
I / / J-J 2 >

If the curvature of a is greater than A then

Proof. Let us fix a number c, 0 < c < 1 and construct a maximal set Bc c M such
that the distance between any two of its points is greater than or equal to c/?CT. The
balls of radius cRjl around the points of Bc are disjoint so that by lemma 3.5

Card Bc < vJ((c/2)R«)2. (3.7)

On the other hand, the maximality of Bc implies that the balls of radius cRa around
the points of Bc cover M.

Let now y e ^ f f ( r ) . Let us fix a: 0<a < 1 and divide the geodesic y by points
Po, Pi, • • •. Pm-u Pm =Po into the segments of length aRa (the last segment (pm-ip0)
may be shorter).

Let for i = 0 , 1 , . . . , m - 1 , q{;e Bc be such a point that da{ph qt) <cR«.
If a + 2c < 1 then all four points ph pi+i, qit qi+i as well as the shortest geodesies

connecting these points lie in a ball of radius R^.
In particular, the geodesic segment (p,-p,-+i) will be homotoped to the segment

iqiqi+i) in such a manner that the ends move uniformly along the geodesic segments
(piqi) and (p,-+i<fr+i) respectively. This means that the curve y is homotopical to a
p i e c e w i s e g e o d e s i c c u r v e y ' = ( q 0 , qu<l2, • • • , q m - \ , <?o) w h e r e qteBc, i = 0,...,
m - 1 . Obviously, if yi, y2 belong to different elements of II the corresponding
curves yi and y'2 must be different.

Since m = [Uy)/aR(r] +1 < [T/aR,,} +1 we have

PSAT)< (Card Bc)
(T/aR-)+1 (3.8)

and by (3.7) and (3.8)

n < -4~ log (vJ((c/2)R.)2). (3.9)

Putting in (3.9) c = (1 - a ) / 2 we obtain the first statement of the proposition.
In order to obtain the second statement we remark that in our approximation

procedure the pair (qh qi+1) cannot be an arbitrary pair of elements of the set Bc

because d<T(qi+i, qi)<Rv. Let Kc be the maximum number of elements of Ba in a
ball of radius Ra. Instead of (3.8) we have then
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Clearly

maximal volume of an R^-ball
minimal volume of a cRJ2 ball'

By lemma 3.5 and the above volume estimate for metrics with the curvature
bounded from below ([5, chapter 11, theorem 15], we have

sinft
KC<1T (3.11)

Now the second statement of 3.6 follows immediately from (3.10) and (3.11). •

Proof of 3.4. By theorem 3.1 and proposition 3.6 we have for any a: 0 < « < 1

)Pcr^l ) (Pi) >( 1 -a-TTT-llog— log——) •

With the curvature assumption we have similarly,

g(7rsin/i||A|)log^i
O

Remark. I am almost certain that there exists an estimate for Ps
a from above

depending only on R& without the curvature assumption but I have not been able
to find it.

I would like to mention two more results related to the discussed topic which
were proved by D. Epstein and A Douady correspondingly in response to my
questions.

3.7. There exists a constant D =D(E,v,R) such that if er0 is a metric of constant
negative curvature with total volume v and injectivity radius R on a surface with
negative Euler characteristic E and a = pcr0 is a metric of non-positive curvature then

ptr>D(E,v,R)

(D. Epstein).

3.8. Given e >0 , E <0 there exists a metric <r0 of constant negative curvature and
total volume I on a surface with Euler characteristic E and a positive function p
with J p dn^ = 1 such that a = pa0 is a metric of negative curvature and p<T<e
(A. Douady).

3(C). Another natural measure of deviation from the constant curvature, at least
for metrics of non-positive curvature, seems to be the average of the absolute value
of the square root of curvature Ka.

By the Gauss-Bonnet theorem
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so that if Ka < 0 then by the Jensen inequality
def f , ,

= (-*„)' dita < (-2vE/v.Y = Ko (3.12)
def

where <r0 is any metric of constant negative curvature on M with the same total
area as a.

Recently A. Manning [18] and independently P. Sarnak [26] proved the following
entropy estimate from below.

3.9. If a is a metric of negative curvature then

(Sarnak also has a multio mensional version of this inequality.)

Combining this result with our estimate for the metric entropy from above (theorem
3.2) one obtains an inequality between the two measures of deviation from constant
curvature. Let, as above, o-0 be any metric of constant negative curvature such that
V<r0 = Va.

3.10. COROLLARY. For any metric a of negative curvature

and this inequality is strict for every metric of non-constant curvature.

Some examples show that the gap between the two sides of the last inequality
may be quite big. Namely, one can construct on every surface with negative Euler
characteristic a metric a of negative curvature and of total area 1 such that ka is
arbitrarily small but the entropy ht (and consequently p^) is bounded from below
by a fixed positive number.

4. Counting hyperbolic geodesies

4(A). In our proofs of the results dealing with closed geodesies (theorem 2.1 and
its corollaries 2.2, 2.3 and theorem 3.1) we used ergodic properties of geodesic
flows only for manifolds of negative curvature. In other words, we used ergodic
theory for Anosov flows. Closed geodesies for a general metric were produced by
a variational argument. In the two-dimensional case, since these geodesies are the
shortest in their free homotopy classes, they may be either hyperbolic or parabolic
(degenerate) [9, § 4.6]. Variational methods do not allow one to distinguish between
these two cases.

Now we are going to apply ergodic theory for general smooth dynamical systems
in order to produce an estimate from below for the growth rate of hyperbolic closed
geodesies and more specifically, the geodesies with a fixed degree of hyperbolicity.

For low-dimensional dynamical systems (dimension two for discrete time and
three for continuous time) positive entropy implies the existence of large sets of
orbits with hyperbolic behaviour, including many periodic hyperbolic orbits [13],
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[16]. We refer to [13] for all background information, including the discussion on
the Lyapunov characteristic exponents. Let us note that the Lyapunov exponents
for a flow coincide with the corresponding exponents for its time-one map; a trivial
zero exponent, corresponding to the flow direction should not be counted.

We will consider the following situation which includes as a special case the
geodesic flow for a Riemannian metric of class C2+s (S > 0) on a compact surface.

Let N be a compact 3-dimensional manifold, / = {/<}<eR a C1+s (5>0) flow on
N without fixed points, fi an /-invariant Borel probability ergodic measure with
non-zero Lyapunov exponents \i < 0 < # 2 (cf. [13]). Let for a, /3 >0, Pa,p(f, T)
be the number of hyperbolic periodic orbits of period < T with a negative charac-
teristic exponent < - a and a positive exponent >/3.

4.1. THEOREM. For every e > 0

This theorem is essentially a continuous-time version of the two-dimensional
case of theorem 4.3 from [10]. (The multi-dimensional version of theorem 4.1 is
also true, but we do not need it for our purpose.) The only difference is that the
degree of hyperbolicity of produced periodic orbits is not estimated in [13] explicitly.
The changes in the proof which provide such an estimate are very transparent. As
for the translation from diffeomorphisms to flows, it can be done straightforwardly
beginning from the definition of the Lyapunov metric through the flow versions of
propositions 2.3 and 2.4 which characterize the behaviour of orbits near a regular
orbit to main closing type lemma and the final arguments which use our proposition
1.6 instead of its discrete-time version. As a matter of fact, the result for
diffeomorphisms can be deduced from the result for flows by means of the standard
suspension construction.

Returning to the case of Riemannian metric a on a compact surface, let us
denote for * > 0 , T>0.

P&.xiT) - the set of y e &<T(T) such that y is hyperbolic and its positive Lyapunov
exponent is ^x (then the negative exponent is s - # , because the two exponents
have the same absolute value);

F ^ = Jim. (log (min (PV,X(T), \)))/T. (4.1)
T-*oo

4.2. COROLLARY. For every Riemannian metric cr of class C2+s (S >0)ona compact
surface and any e > 0

The proof goes exactly the same way as the proof of corollary (4.4) in [13].
Namely, assuming that ftCT>0 one can find an ergodic <£CT-invariant measure fj.e
such that
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On the other hand, by the above entropy estimate [25] we have for the Lyapunov
exponents xi', X%' = ~X\' >0 of the geodesic flow with respect to fie

Now theorem 4.1 applied to the geodesic flow provides for every ei < e

Theorem 3.1 and corollary 4.2 imply the absolute estimate for the growth rate of
hyperbolic closed geodesies.

4.3. COROLLARY. For any Riemannian metric a of class C2+s {8 > 0) on a compact
surface with negative Euler characteristic E

and this inequality is strict unless a is a metric of constant negative curvature.

Since for metrics of constant negative curvature -K2, the positive exponent of
every geodesic is equal to K (and, consequently, the negative one is equal to -K)
we can say that metrics of non-constant curvature have more closed geodesies
which are more hyperbolic than the closed geodesies for the metrics of constant
negative curvature with the same total area.

4(B). It is interesting to explore the relationship between the hyperbolic closed
geodesies described in corollary 4.3 and the shortest geodesies in free homotopy
classes from theorem 3.1. The connections do not seem to be simple. For example,
I do not know whether there are always infinitely many hyperbolic closed geodesies
which are the shortest in their respective free homotopy classes; even the existence
of one such geodesic is not clear.

On the other hand, one can count those hyperbolic closed geodesies which are
the shortest among the hyperbolic closed geodesies in respective elements of II. In
other words, let P^h(T) be the number of Tel l such that there is a hyperbolic
closed geodesic in F of length <T; let, moreover,

The following conjecture seems reasonable.

4.4. CONJECTURE. Under the assumptions of 4.3

and this inequality is strict for every Riemannian metric a of non-constant curvature.

4(C). In the rest of this section we will prove a refinement of corollary 4.3 which
implies a weaker version of conjecture 4.4. We assume that o- is a Riemannian
metric on a compact surface with negative Euler characteristic.

Letforf>0

St,a = {tie S°M: for every lift v of v the geodesic {TT^^IJ}S=_, is one of the
shortest curves connecting its ends},
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and

Sv = {v e S^M: for every lift v of v the whole geodesic {vs<f> r£}!=-<»
is the shortest curve between any two of its points}. (4.2)

Obviously, if 11 > t2 then S,U<T <= S,2iO. and

£ r = P i Sti<T.
I>0

Every 5,-<7 is a closed subset of S^M; it is non-empty because it contains all
closed geodesies of length >2f which are shortest in their free homotopy classes.
Thus, by the compactness of M, the set S^ is also non-empty; it is obviously closed
and invariant with respect to the geodesic flow. Moreover, its dynamical struc-
ture is rich enough as follows from the next statement which is a refinement of
1.5.

4.5. PROPOSITION. | J

Proof. Let for a closed <£ "-invariant set A c S"M, SAT, 8, A) be the maximal number
of (T, 5)-separated orbits of <$>" belonging to the set A and NAT, 8, A) be the
minimal number of sets of diameter <25 in the metric DZ which cover A.

Clearly

NAT, 8, A) >SAT, 28, A) (4.3)

because every element of the covering can contain at most one point from a
(T, 5)-separated set.

On the other hand

^(ri + ̂ S.A^A^S.^-iVtT^A) (4.4)

because for any coverings sd\ and j ^ 2 corresponding to the D J1 and D Z2 one can
produce a covering by sets c n<t>-Tld, c esi\,d €s42, of diameter <25 with respect
to D J1+T2 whose cardinality does not exceed Card six • Card si2. It follows from
(4.4) that

lim (logNAT, 8, A))IT
T->oo

exists and is equal to
inf (log NAT, 8, A))/T.

Moreover, h{<j>°\A) = l im^0 limbec (logN(T, 8, A))/T.
Let

S<,<r = P ) <f>°S,-<r.
seR

By definition, 5j><T is a closed invariant set of the geodesic flow; it still contains all
the closed geodesies of length s25 which are the shortest in their respective free
homotopy classes. Since non-homotopical closed geodesies are always separated
by a constant independent of a, say 5CT > 0 we obtain from (4.3) that for every t

PAT). (4.5)
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Let us now fix T > 0 and S > 0. Since

one can find t>0 such that the set S|>o. is contained in 5/2-neighbourhood of S^
in the metric D Z- That means, in particular, that every covering of 5,, by the sets
of diameter <e in this metric produces a covering of S'Ucr by the same number of
sets of diameter < e + 5 (by taking 5-neighbourhoods of the elements of the
covering). Thus by (4.5)

so that

Our last estimate involves the counting of those hyperbolic closed geodesies
which are lifted to almost shortest geodesies on the universal covering. More
precisely, let for e > 0

P%,X(T) = Card {y€@v,x(T): for every v e y, every lift v of v, t, s: 0<f, s, ^ U y )

da(ihfftv,'S^iv)>\t-s\ + e}, (4.6)

(cf. with (4.1)) and as usual

P^,x= Urn (logPl,x(T))/T.
T-»oo

4.6. THEOREM. Under the assumptions of 4.3 for every e >0

and this inequality is strict for every metric of non-constant curvature.

The proof makes use of theorem 3.2, proposition 4.5 and theorem 4.1 with the
following addition which is also a continuous time version of some information
obtained in [13, cf. main lemma and the description of the set Ln(e, I) on p. 172].

4.7. The statement of theorem 4.1 remains true if we count only those closed orbits
which lie in e-neighbourhood in the metric dr (cf. (1.3)) of orbits belonging to the
support of the measure /x.

Proof of 4.6. We can assume that cr is not a metric of constant negative curvature
because otherwise S^ = S"M, and P^,K(E,V^ =P<TJC(E,VJ = K(E, va).

Let us fix e >0. By proposition 4.5 and the variational principle for topological
entropy [7] we can find a ^''-invariant ergodic measure supported on the set Sa

such that

so that if e is sufficiently small then by theorem 3.2
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By the above entropy estimate [25] we have for the positive Lyapunov exponent
X2 of ^^ with respect to n:

Now we can apply theorem 4.1 and 4.7. If e is small enough then for every
constructed closed geodesic y, every lift y of y and v e y we can find by 4.7 a
tangent vector v'&Sa and a lift v' of u' such that for 0< t < T

D&(<i>tv,<t>tv')<e/2 (4.7)
(recall that T >/„.(->/)).

Thus for (,

', *4fv')-dA*<(>tv, *<f>tv')-d&(*<plv, wtffo'). (4.8)
Since c ' e S , (cf. (4.2)) the first term in the right-hand part of (4.8) is equal to the
length of the geodesic segment {ir<£ft;'}t=s i.e., \t—s\. Two other terms are estimated
from above by e as follows from (4.7). This means that y satisfies (4.6). •
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